Инструменты для рисования UML-диаграмм. Основные диаграммы языка UML Какие виды моделей существуют в uml

UML-диаграмма - это специализированный язык графического описания, предназначенный для объектного моделирования в сфере разработки различного программного обеспечения. Данный язык имеет широкий профиль и представляет собой открытый стандарт, в котором используются различные графические обозначения, чтобы создать абстрактную модель системы. UML создавался для того, чтобы обеспечить определение, визуализацию, документирование, а также проектирование всевозможных программных систем. Стоит отметить, что сама по себе UML-диаграмма не представляет собой язык программирования, но при этом предусматривается возможность генерации на ее основе отдельного кода.

Зачем она нужна?

Применение UML не заканчивается на моделировании всевозможного ПО. Также данный язык активно сегодня используется для моделирования различных бизнес-процессов, ведения системного проектирования, а также отображения организационных структур.

С помощью UML разработчики программного обеспечения могут обеспечить полное соглашение в используемых графических обозначениях, чтобы представить общие понятия, такие как: компонент, обобщение, класс, поведение и агрегация. За счет этого достигается большая степень концентрации на архитектуре и проектировании.

Также стоит отметить, что есть несколько видов таких диаграмм.

Диаграмма классов

Диаграмма классов UML представляет собой статическую структурную диаграмму, предназначенную для описания структуры системы, а также демонстрации атрибутов, методов и зависимостей между несколькими различными классами.

Стоит отметить тот факт, что есть несколько точек зрения на построение таких диаграмм в зависимости от того, каким образом они будут использоваться:

  • Концептуальная. В данном случае диаграмма классов UML осуществляет описание модели определенной предметной области, и в ней предусматриваются только классы прикладных объектов.
  • Специфическая. Диаграмма используется в процессе проектирования различных информационных систем.
  • Реализационная. Диаграмма классов включает в себя всевозможные классы, которые непосредственно используются в программном коде.

Диаграмма компонентов

Диаграмма компонентов UML представляет собой полностью статическую структурную диаграмму. Предназначается она для того, чтобы продемонстрировать разбиение определенной программной системы на разнообразные структурные компоненты, а также связи между ними. Диаграмма компонентов UML в качестве таковых может использовать всевозможные модели, библиотеки, файлы, пакеты, исполняемые файлы и еще множество других элементов.

Диаграмма композитной/составной структуры

UML диаграмма композитной/составной структуры также является статической структурной диаграммой, но используется она для того, чтобы показать внутреннюю структуру классов. По возможности данная диаграмма может продемонстрировать также взаимодействие элементов, находящихся во внутренней структуре класса.

Подвидом их является UML-диаграмма кооперации, которая используется для демонстрации ролей, а также взаимодействия различных классов в границах кооперации. Они являются достаточно удобными в том случае, если нужно моделировать шаблоны проектирования.

Стоит отметить, что одновременно могут использоваться виды диаграмм UML классов и композитной структуры.

Диаграмма развертывания

Данная диаграмма используется для того, чтобы моделировать работающие узлы, а также всевозможные артефакты, которые на них были развернуты. В UML 2 на различных узлах осуществляется разворачивание артефактов, в то время как в первой версии разворачивались исключительно компоненты. Таким образом, диаграмма развертывания UML используется преимущественно ко второй версии.

Между артефактом и тем компонентом, который он реализует, формируется зависимость манифестации.

Диаграмма объектов

Данный вид позволяет увидеть полноценный или же частичный снимок создаваемой системы в определенный момент времени. На ней полностью отображаются все экземпляры классов конкретной системы с указанием текущих значений их параметров, а также связей между ними.

Диаграмма пакетов

Эта диаграмма носит структурный характер, и основным ее содержанием являются всевозможные пакеты, а также отношения между ними. В данном случае нет никакого жесткого разделения между несколькими структурными диаграммами, вследствие чего их использование чаще всего встречается исключительно для удобства, и никакого семантического значения в себе не несет. Стоит отметить, что различные элементы могут предоставлять другие UML диаграммы (примеры: пакеты и сами диаграммы пакетов).

Их использование осуществляется для того, чтобы обеспечить организацию нескольких элементов в группы по определенному признаку, чтобы упростить структуру, а также организовать работу с моделью данной системы.

Диаграмма деятельности

Диаграмма деятельности UML отображает разложение определенной деятельности на несколько составных частей. В данном случае понятием «деятельность» называется спецификация определенного исполняемого поведения в виде параллельного, а также координированного последовательного выполнения различных подчиненных элементов - вложенных типов деятельности и различных действий, объединенных потоками, идущими от выходов определенного узла к входам другого.

Диаграмма деятельности UML достаточно часто используются для того, чтобы моделировать различные бизнес-процессы, параллельные и последовательные вычисления. Помимо всего прочего ими моделируются всевозможные технологические процедуры.

Диаграмма автомата

Этот вид называется и несколько иначе - диаграмма состояний UML. Имеет представленный конечный автомат с простыми и композитными состояниями, а также переходами.

Конечный автомат представляет собой спецификацию последовательности различных состояний, через которые проходит определенный объект, или же взаимодействие в ответ на некоторые события своей жизни, а также ответные действия объекта на такие события. Конечный автомат, который использует диаграмма состояний UML, закрепляется за исходным элементом и используется для того, чтобы определить поведение его экземпляров.

В качестве аналогов таких диаграмм могут использоваться так называемые дракон-схемы.

Диаграммы сценариев использования

Диаграмма вариантов использования UML отображает на себе все отношения, которые возникают между актерами, а также различными вариантами использования. Главная ее задача - осуществлять собой полноценное средство, при помощи которого заказчик, конечный пользователь или же какой-нибудь разработчик сможет совместно обсуждать поведение и функциональность определенной системы.

Если диаграмма вариантов использования UML используется в процессе моделирования системы, то аналитик собирается:

  • Четко отделить моделируемую систему от ее окружения.
  • Выявить действующих лиц, пути их взаимодействия с данной системой, а также ожидаемый ее функционал.
  • Установить в глоссарии в качестве предметной области различные понятия, которые относятся к подробному описанию функционала данной системы.

Если разрабатывается в UML диаграмма использования, процедура начинается с текстового описания, которое получается при работе с заказчиком. При этом стоит отметить тот факт, что различные нефункциональные требования в процессе составления модели прецедентов полностью опускаются, и для них уже будет формироваться отдельный документ.

Коммуникации

Диаграмма коммуникации точно так же, как и диаграмма последовательности UML, является транзитивной, то есть выражает в себе взаимодействие, но при этом демонстрирует его разными способами, и при необходимости с нужной степенью точности можно преобразовать одну в другую.

Диаграмма коммуникации отображает в себе взаимодействия, которые происходят между различными элементами композитной структуры, а также ролями кооперации. Главным отличием ее от диаграммы последовательности является то, что на ней достаточно явно указываются отношения между несколькими элементами, а время не используется в качестве отдельного измерения.

Данный тип отличается абсолютно свободным форматом упорядочивания нескольких объектов и связей точно так же, как это осуществляется в диаграмме объектов. Если есть необходимость в том, чтобы поддерживать порядок сообщений при этом свободном формате, осуществляется их хронологическая нумерация. Чтение данной диаграммы начинается с изначального сообщения 1.0, и впоследствии продолжается по тому направлению, по которому осуществляется передача сообщений от одного объекта к другому.

В большинстве своем такие диаграммы демонстрируют точно такую же информацию, которую предоставляет нам диаграмма последовательности, однако из-за того, что здесь используется другой способ представления информации, определенные вещи на одной диаграмме становится гораздо проще определить, чем на другой. Также стоит отметить, что диаграмма коммуникаций более наглядно показывает, с какими элементами вступает во взаимодействие каждый отдельный элемент, в то время как диаграмма последовательности более ясно показывает, в каком порядке осуществляются взаимодействия.

Диаграмма последовательности

Диаграмма последовательности UML демонстрирует взаимодействия между несколькими объектами, которые упорядочиваются в соответствии с временем их проявления. На такой диаграмме отображается упорядоченное во времени взаимодействие между несколькими объектами. В частности, на ней отображаются все объекты, которые принимают участие во взаимодействии, а также полная последовательность обмениваемых ими сообщений.

Главными элементами в данном случае выступают обозначения различных объектов, а также вертикальные линии, отображающие течение времени и прямоугольники, предоставляющие деятельность определенного объекта или же выполнение им какой-либо функции.

Диаграмма сотрудничества

Данный тип диаграмм позволяет продемонстрировать взаимодействия между несколькими объектами, абстрагируясь от последовательности трансляции сообщений. Данный тип диаграмм в компактном виде отображает в себе абсолютно все передаваемые и принимаемые сообщения определенного объекта, а также форматы этих сообщений.

По причине того, что диаграммы последовательности и коммуникации представляют собой просто-напросто разный взгляд на одни и те же процедуры, Rational Rose предоставляет возможность создавать из диаграммы последовательности коммуникационную или же наоборот, а также осуществляет полностью автоматическую их синхронизацию.

Диаграммы обзора взаимодействия

Это диаграммы языка UML, которые относятся к разновидности диаграмм деятельности и включают в себя одновременно элементы Sequence и конструкции потока управления.

Стоит отметить тот факт, что данный формат объединяет в себе Collaboration и Sequence diagram, которые предоставляют возможность с разных точек зрения рассматривать взаимодействие между несколькими объектами в формируемой системе.

Диаграмма синхронизации

Представляет собой альтернативный вариант диаграммы последовательности, который явным образом демонстрирует изменение состояния на линии жизни с определенной шкалой времени. Может быть достаточно полезной в различных приложениях реального времени.

В чем преимущества?

Стоит отметить несколько преимуществ, которыми отличается UML диаграмма пользования и другие:

  • Язык является объектно-ориентированным, вследствие чего технологии описания результатов проведенного анализа и проектирования являются семантически близкими к методам программирования на всевозможных объектно-ориентированных языках современного типа.
  • При помощи данного языка система может быть описана практически с любых возможных точек зрения, и точно так же описываются различные аспекты ее поведения.
  • Все диаграммы являются сравнительно простыми для чтения даже после относительно быстрого ознакомления с его синтаксисом.
  • UML позволяет расширить, а также вводить собственные графические и текстовые стереотипы, что способствует его использованию не только в программной инженерии.
  • Язык получил достаточно широкое распространение, а также довольно активно развивается.

Недостатки

Несмотря на то что построение UML-диаграмм отличается массой своих плюсов, довольно часто их и критикуют за следующие недостатки:

  • Избыточность. В преимущественном большинстве случаев критики говорят о том, что UML является слишком большим и сложным, и зачастую это неоправданно. В него входит достаточно много избыточных или же практически бесполезных конструкций и диаграмм, причем наиболее часто подобная критика идет в адрес второй версии, а не первой, потому что в более новых ревизиях присутствует большее количество компромиссов «разработанных комитетом».
  • Различные неточности в семантике. По той причине, что UML определяется комбинацией себя, английского и OCL, у него отсутствует скованность, которая является присущей для языков, точно определенных техникой формального описания. В определенных ситуациях абстрактный синтаксис OCL, UML и английский начинают друг другу противоречить, в то время как в других случаях они являются неполными. Неточность описания самого языка одинаково отражается как на пользователях, так и на поставщиках инструментов, что в конечном итоге приводит к несовместимости инструментов из-за уникального способа трактовки различных спецификаций.
  • Проблемы в процессе внедрения и изучения. Все указанные выше проблемы создают определенные сложности в процессе внедрения и изучения UML, и в особенности это касается тех случаев, когда руководство заставляет инженеров насильно его использовать, в то время как у них отсутствуют предварительные навыки.
  • Код отражает код. Еще одним мнением является то, что важность имеют не красивые и привлекательные модели, а непосредственно рабочие системы, то есть код и есть проект. В соответствии с данным мнением есть потребность в том, чтобы разработать более эффективный способ написания программного обеспечения. UML принято ценить при подходах, компилирующих модели для регенерирования выполнимого или же исходного кода. Но на самом деле этого может быть недостаточно, потому что в данном языке отсутствуют свойства полноты по Тьюрингу, и каждый сгенерированный код в конечном итоге будет ограничиваться тем, что может предположить или же определить интерпретирующий UML инструмент.
  • Рассогласование нагрузки. Данный термин происходит из теории системного анализа для определения неспособности входа определенной системы воспринять выход иной. Как в любых стандартных системах обозначений, UML может представлять одни системы в более эффективном и кратком виде по сравнению с другими. Таким образом, разработчик больше склоняется к тем решениям, которые являются более комфортными для переплетения всех сильных сторон UML, а также других языков программирования. Данная проблема является более очевидной в том случае, если язык разработки не соответствует основным принципам объектно-ориентированной ортодоксальной доктрины, то есть не старается работать в соответствии с принципами ООП.
  • Пытается быть универсальным. UML представляет собой язык моделирования общего назначения, который старается обеспечить совместимость с любым существующим на сегодняшний день языком обработки. В контексте определенного проекта, для того, чтобы команда проектировщиков смогла добиться конечной цели, нужно выбирать применимые возможности этого языка. Помимо этого возможные пути ограничения сферы использования UML в какой-то определенной области проходят через формализм, который является не полностью сформулированным, а который сам представляет собой объект критики.

Таким образом, использование данного языка является актуальным далеко не во всех ситуациях.

Все диаграммы UML можно условно разбить на две группы, первая из которых ‒ общие диаграммы. Общие диаграммы практически не зависят от предмета моделирования и могут применяться в любом программном проекте без оглядки на предметную область, область решений и т.д.

1.5.1. Диаграмма использования

Диаграмма использования (use case diagram) ‒ это наиболее общее представление функционального назначения системы.

Диаграмма использования призвана ответить на главный вопрос моделирования: что делает система во внешнем мире?

На диаграмме использования применяются два типа основных сущностей: варианты использования 1 и действующие лица 2 , между которыми устанавливаются следующие основные типы отношений:

  • ассоциация между действующим лицом и вариантом использования 3 ;
  • обобщение между действующими лицами 4 ;
  • обобщение между вариантами использования 5 ;
  • зависимости (различных типов) между вариантами использования 6 .

На диаграмме использования, как и на любой другой, могут присутствовать комментарии 7 . Более того, это настоятельно рекомендуется делать для улучшения читаемости диаграмм.

Основные элементы нотации, применяемые на диаграмме использования, показаны ниже. Детальное описание приведено в разделе 2.2 .

1.5.2. Диаграмма классов

Диаграмма классов (class diagram) ‒ основной способ описания структуры системы.

Это не удивительно, поскольку UML в первую очередь объектно-ориентированный язык, и классы являются основным (если не единственным) "строительным материалом".

На диаграмме классов применяется один основной тип сущностей: классы 1 (включая многочисленные частные случаи классов: интерфейсы, примитивные типы, классы-ассоциации и многие другие), между которыми устанавливаются следующие основные типы отношений:

  • ассоциация между классами 2 (с множеством дополнительных подробностей);
  • обобщение между классами 3 ;
  • зависимости (различных типов) между классами 4 и между классами и интерфейсами.

Некоторые элементы нотации, применяемые на диаграмме классов, показаны ниже. Детальное описание приведено в главе 3 .

1.5.3. Диаграмма автомата

Диаграмма автомата (state machine diagram) ‒ это один из способов детального описания поведения в UML на основе явного выделения состояний и описания переходов между состояниями.

В сущности, диаграммы автомата, как это следует из названия, представляют собой граф переходов состояний (см. главу 4), нагруженный множеством дополнительных деталей и подробностей.

На диаграмме автомата применяют один основной тип сущностей ‒ состояния 1 , и один тип отношений ‒ переходы 2 , но и для тех и для других определено множество разновидностей, специальных случаев и дополнительных обозначений. Перечислять их все во вступительном обзоре не имеет смысла.

Детальное описание всех вариаций диаграмм автомата приведено в разделе 4.2 , а на следующем рисунке показаны только основные элементы нотации, применяемые на диаграмме автомата.

1.5.4. Диаграмма деятельности

Диаграмма деятельности (activity diagram) ‒ способ описания поведения на основе указания потоков управления и потоков данных.

Диаграмма деятельности ‒ еще один способ описания поведения, который визуально напоминает старую добрую блок-схему алгоритма. Однако за счет модернизированных обозначений, согласованных с объектно-ориентированным подходом, а главное, за счет новой семантической составляющей (свободная интерпретация сетей Петри), диаграмма деятельности UML является мощным средством для описания поведения системы.

На диаграмме деятельности применяют один основной тип сущностей ‒ действие 1 , и один тип отношений ‒ переходы 2 (передачи управления и данных). Также используются такие конструкции как развилки, слияния, соединения, ветвления 3 , которые похожи на сущности, но таковыми на самом деле не являются, а представляют собой графический способ изображения некоторых частных случаев многоместных отношений. Семантика элементов диаграмм деятельности подробно разобрана в главе 4 . Основные элементы нотации, применяемые на диаграмме деятельности, показаны ниже.

1.5.5. Диаграмма последовательности

Диаграмма последовательности (sequence diagram) ‒ это способ описания поведения системы на основе указания последовательности передаваемых сообщений.

Фактически, диаграмма последовательности ‒ это запись протокола конкретного сеанса работы системы (или фрагмента такого протокола). В объектно-ориентированном программировании самым существенным во время выполнения является пересылка сообщений между взаимодействующими объектами. Именно последовательность посылок сообщений отображается на данной диаграмме, отсюда и название.

На диаграмме последовательности применяют один основной тип сущностей ‒ экземпляры взаимодействующих классификаторов 1 (в основном классов, компонентов и действующих лиц), и один тип отношений ‒ связи 2 , по которым происходит обмен сообщениями 3 . Предусмотрено несколько способов посылки сообщений, которые в графической нотации различаются видом стрелки, соответствующей отношению.

Важным аспектом диаграммы последовательности является явное отображение течения времени. В отличие от других типов диаграмм, кроме разве что диаграмм синхронизации, на диаграмме последовательности имеет значение не только наличие графических связей между элементами, но и взаимное расположение элементов на диаграмме. А именно, считается, что имеется (невидимая) ось времени, по умолчанию направленная сверху вниз, и то сообщение, которое отправлено позже, нарисовано ниже.

Ось времени может быть направлена горизонтально, в этом случае считается, что время течет слева направо.

На следующем рисунке показаны основные элементы нотации, применяемые на диаграмме последовательности. Для обозначения самих взаимодействующих объектов применяется стандартная нотация ‒ прямоугольник с именем экземпляра классификатора. Пунктирная линия, выходящая из него, называется линией жизни (lifeline) 4 . Это не обозначение отношения в модели, а графический комментарий, призванный направить взгляд читателя диаграммы в правильном направлении. Фигуры в виде узких полосок, наложенных на линию жизни, также не являются изображениями моделируемых сущностей. Это графический комментарий, показывающий отрезки времени, в течении которых объект владеет потоком управления (execution occurrence) 5 или другими словами имеет место активация (activation) объекта. Составные шаги взаимодействия(combined fragment) 6 позволяют на диаграмме последовательности, отражать и алгоритмические аспекты протокола взаимодействия. Прочие детали нотации диаграммы последовательностей см. в главе 4 .

1.5.6. Диаграмма коммуникации

Диаграмма коммуникации (communication diagram) ‒ способ описания поведения, семантически эквивалентный диаграмме последовательности.

Фактически, это такое же описание последовательности обмена сообщениями взаимодействующих экземпляров классификаторов, только выраженное другими графическими средствами. Более того, большинство инструментов умеет автоматически преобразовывать диаграммы последовательности в диаграммы коммуникации и обратно.

Таким образом, на диаграмме коммуникации также как и на диаграмме последовательности применяют один основной тип сущностей ‒ экземпляры взаимодействующих классификаторов 1 и один тип отношений ‒ связи 2 . Однако здесь акцент делается не на времени, а на структуре связей между конкретными экземплярами.

На рисунке показаны основные элементы нотации, применяемые на диаграмме коммуникации. Для обозначения самих взаимодействующих объектов применяется стандартная нотация ‒ прямоугольник с именем экземпляра классификатора. Взаимное положение элементов на диаграмме кооперации не имеет значения ‒ важны только связи (чаще всего экземпляры ассоциаций), вдоль которых передаются сообщения 3 . Для отображения упорядоченности сообщений во времени применяется иерархическая десятичная нумерация.

1.5.7. Диаграмма компонентов

Диаграмма компонентов (component diagram) ‒ показывает взаимосвязи между модулями (логическими или физическими), из которых состоит моделируемая система.

Основной тип сущностей на диаграмме компонентов ‒ это сами компоненты 1 , а также интерфейсы 2 , посредством которых указывается взаимосвязь между компонентами. На диаграмме компонентов применяются следующие отношения:

  • реализации между компонентами и интерфейсами (компонент реализует интерфейс);
  • зависимости между компонентами и интерфейсами (компонент использует интерфейс) 3 .

На рисунке показаны основные элементы нотации, применяемые на диаграмме компонентов. Детальное описание приведено в главе 3 .

1.5.8. Диаграмма размещения

Диаграмма размещения (deployment diagram) наряду с отображением состава и связей элементов системы показывает, как они физически размещены на вычислительных ресурсах во время выполнения.

Таким образом, на диаграмме размещения, по сравнению с диаграммой компонентов, добавляется два типа сущностей: артефакт 1 , который является реализацией компонента 2 и узел 3 (может быть как классификатор, описывающий тип узла, так и конкретный экземпляр), а также отношение ассоциации между узлами 4 , показывающее, что узлы физически связаны во время выполнения.

На рисунке показаны основные элементы нотации, применяемые на диаграмме размещения. Для того чтобы показать, что одна сущность является частью другой, применяется либо отношение зависимости «deploy» 5 , либо фигура одной сущности помещается внутрь фигуры другой сущности 6 . Детальное описание диаграммы приведено в главе 3 .

UML - это аббревиатура, обозначающая Unified Modeling Language. Фактически, это один из самых популярных методов моделирования бизнес-процессов, являющийся международной стандартной нотацией для указания, визуализации и документирования разработки ПО. Определенный группой управления объектами, появился, как результат нескольких дополнительных систем нотаций UML и теперь стал стандартом де-факто для визуального моделирования. Основополагающий принцип любого объектно-ориентированного программирования начинается с построения модели.

UML был создан в результате хаоса вокруг разработки ПО и документации. В 1990-х годах было несколько различных способов представления программных систем. Появилась потребность в более унифицированном способе visual UML представления этих систем, и в результате в 1994-1996 годах он был разработан тремя инженерами-программистами, работающими в Rational Software. Позднее он был принят в виде стандарта в 1997 году и до сих пор остается им, получив всего лишь несколько обновлений.

В основном, UML - это язык моделирования общего назначения в области разработки программного обеспечения. Однако теперь он нашел свое отражение в документации нескольких бизнес-процессов или рабочих процессов, например, диаграммы активности. Тип UML-диаграмм могут использоваться в качестве замены для блок-схем. Они обеспечивают как более стандартизированный способ моделирования рабочих процессов, так и широкий спектр функций для повышения удобочитаемости и эффективности.

Архитектура основана на мета-объекте, которая определяет основу для создания языка UML. Она достаточно точна для создания всего приложения. Полностью исполняемый UML может быть развернут на нескольких платформах с использованием разных технологий со всеми процессами в течение всего цикла разработки ПО.

UML предназначен для разработки пользователями языка визуального моделирования. Он поддерживает концепции высокого уровня разработки, такие как структуры, шаблоны и совместные работы. UML - это набор элементов, таких как:

  1. Заявления о языке программирования.
  2. Актеры - расписывают роль, которую играет пользователь или любая другая система, взаимодействующая с объектом.
  3. Мероприятия, которые должны выполняться по исполнению рабочего контракта и быть представлены в диаграммах.
  4. Бизнес-процесс, включающий в себя набор задач, создающих конкретный сервис для клиентов, визуализируемый блок-схемою последовательных действий.
  5. Логические и многоразовые программные компоненты.

Диаграммы UML делятся на две категории. Первый тип включает семь типов диаграмм, представляющих структурную информацию, второй - остальные семь, представляющие общие типы поведения. Эти диаграммы используются для документирования архитектуры систем и принимают непосредственное участие в UML моделировании системы.

UML-диаграммы представлены в виде статических и динамических представлений системной модели. Статический вид включает диаграммы классов и составной структуры, которые подчеркивают статическую структуру. Динамический вид представляет собой взаимодействие между объектами и изменениями внутренних состояний объектов, используя диаграммы последовательности, активности и состояний.

Для упрощения моделирования доступны самые разнообразные инструменты моделирования UML, включая IBM Rose, Rhapsody, MagicDraw, StarUML, ArgoUML, Umbrello, BOUML, PowerDesigner и Dia.

Использование UML имеет различные виды и в документации по разработке программного обеспечения, и в бизнес-процессах:

  1. Эскиз. В этом случае UML-диаграммы используются для передачи различных аспектов и характеристик системы. Однако это только представление верхнего уровня системы и, скорее всего, не будет включать все необходимые детали для выполнения проекта до самого конца.
  2. Forward Design - дизайн эскиза выполняется до кодирования приложения. Это делается для лучшего обзора системы или рабочего процесса, который пользователь пытается создать. Многие проблемы дизайна или недостатки могут быть выявлены, что улучшит общее состояние здоровья и благополучия проекта.
  3. Обратный дизайн. После написания кода диаграммы UML отображаются как форма документации для разных действий, ролей, участников и рабочих процессов.
  4. Светокопия. В этом случае диаграмма служит полной конструкцией, которая требует исключительно фактической реализации системы или программного обеспечения. Часто это делается с помощью инструментов CASE (Computer Aided Software Engineering Tools). Основным недостатком использования инструментов CASE является то, что они требуют определенного уровня знаний, обучения пользователей, а также управления и персонала.

UML не является автономным языком программирования, как Java, C ++ или Python, однако с правильными инструментами он может превратиться в язык UML псевдопрограмм. Для достижения этой цели вся система должна быть документирована в разных диаграммах, и, используя правильное программное обеспечение, диаграммы могут быть непосредственно переведены в код. Этот метод может быть полезен только в том случае, если время, затрачиваемое на рисование диаграмм, займет меньше времени, чем написание фактического кода. Несмотря на то, что UML был создан для моделирования систем, он нашел несколько применений в бизнес-областях.

Ниже приводится пример UML-диаграммы для моделирования бизнеса.

Одним из практических решений было бы визуальное представление потока процесса для telesales через диаграмму деятельности. С того момента, когда порядок берется как вход, до того момента, когда порядок завершен и задан конкретный выход.

Существует несколько типов UML-диаграмм, и каждый из них выполняет другую задачу независимо от того, разрабатывается ли она до реализации или после, как часть документации. Двумя наиболее широкими категориями, охватывающими все остальные типы, являются диаграмма поведения и структурная диаграмма. Как следует из названия, некоторые диаграммы UML пытаются анализировать и изображать структуру системы или процесса, тогда как другие описывают поведение системы, ее участников и компонентов.

Разные типы разбиваются следующим образом:

  1. Не все из 14 различных типов UML-диаграмм используются на регулярной основе при документировании систем и архитектур.
  2. Принцип Парето, применяется и в отношении использования диаграмм UML.
  3. 20 % диаграмм используются разработчиками в 80 % случаев.

Наиболее часто используемые элементы в разработке программного обеспечения:

  • диаграммы использования;
  • диаграммы классов;
  • последовательности.

Диаграммы действий - наиболее важными диаграммами UML для создания моделей бизнес-процессов. В разработке ПО они применяются для описания потока различных действий. Они могут быть как последовательными, так и параллельными. Они описывают объекты, используемые, потребляемые или произведенные в результате деятельности и взаимосвязь между различными видами деятельности.

Все вышесказанное имеет важное значение для моделирования бизнес-процессов, которые ведут от одного к другому, поскольку они взаимосвязаны с понятным началом и концом. В бизнес-среде это также называется сопоставлением бизнес-процессов. Основными действующими лицами являются автор, редактор и издатель. В качестве примера UML можно привести следующее. Когда рецензент просматривает проект и решает, что необходимо внести некоторые изменения. Затем автор пересматривает проект и снова возвращает его, чтобы проанализировать обзор.

Диаграмма использования

Краеугольная часть системы - применяются для анализа требований к уровню системы. Эти требования выражаются в разных вариантах использования. Три основных компонента диаграммы UML - это:

  1. Функциональные - представлены в качестве вариантов использования.
  2. Глагол, описывающий действие.
  3. Актеры - для взаимодействия с системой. В роли актера могут быть пользователи, организации или внешней заявкой. Отношения между участниками представляются прямыми стрелками.

Например, для диаграммы управления запасами. В этом случае есть владелец, поставщик, менеджер, специалист по инвентаризации и инспектор по инвентаризации. В круглых контейнерах обозначают действия, которые выполняют актеры. Возможные действия: покупка и оплата акций, проверка качества запасов, возврат запасов или их распространение.

Этот тип диаграмм хорошо подходит для отображения динамического поведения между участниками в системе, упрощая ее представление не отражая детали реализации.

Временная

Временные диаграммы UML используются для представления отношений объектов, когда центр внимания зависит от времени. При этом не интересно, как объекты взаимодействуют или изменяют друг друга, но пользователь хочет представить, как объекты и субъекты действуют вдоль линейной временной оси.

Каждый отдельный участник представляется через линию жизни, которая по существу является строкой, формирующей этапы, так как отдельный участник переходит от одного этапа к другому. Основное внимание уделяется продолжительности времени событий и изменениям, происходящим в зависимости от нее.

Основными компонентами временной диаграммы являются:

  1. Lifeline - индивидуальный участник.
  2. Временная шкала состояния - единственный жизненный путь может проходить через различные состояния внутри процесса.
  3. Ограничение продолжительности - ограничение временного интервала, которое представляет продолжительность необходимого для выполнения ограничения.
  4. Ограничение по времени - ограничение временного интервала, в течение которого что-то должно выполняться участником.
  5. Появление разрушения - появление сообщения, которое уничтожает отдельного участника и изображает конец жизненного цикла этого участника.

Горизонтальные диаграммы, также называемые диаграммами состояний, используются для описания различных состояний компонента внутри системы. Он принимает конечный формат имени, потому что диаграмма по существу является машиной, которая описывает несколько состояний объекта и как изменяется на основе внутренних и внешних событий.

Очень простая диаграмма состояния машины была бы в шахматной игре. Типичная шахматная игра состоит из ходов, сделанных Белыми, и движений, сделанных Черными. У Белых есть первый ход, что таким образом инициирует игру. Завершение игры может происходить независимо от того, побеждают ли Белые или Черные. Игра может закончиться матчем, отставкой или ничьей (разные состояния машины). Statecharts находят применение в основном в прямом и обратном UML проектировании различных систем.

Последовательные

Этот тип диаграмм самые важные диаграммы UML не только среди сообщества компьютерных наук, но и как модели уровня проектирования для разработки бизнес-приложений. Они популярны при описании бизнес-процессов из-за их визуально самоочевидного характера. Как следует из названия, диаграммы описывают последовательность сообщений и взаимодействий, которые происходят между субъектами и объектами. Актеры или объекты могут быть активны только в случае необходимости или когда другой объект хочет общаться с ними. Все коммуникации представлены в хронологическом порядке.

Чтобы получить более полную информацию, можно рассмотреть пример диаграммы последовательности UML ниже.

Как следует из примера, структурные диаграммы используются для отображения структуры системы. Более конкретно, язык используется в разработке ПО для представления архитектуры системы и того, как разные компоненты взаимосвязаны.

Диаграмма классов UML является наиболее распространенным типом диаграммы для документации по программному обеспечению. Поскольку большинство программ, создаваемых в настоящее время, по-прежнему основано на парадигме объектно-ориентированного программирования, использование диаграмм классов для документирования программного обеспечения оказывается здравым смыслом. Это происходит потому, что ООП основан на UML-классах и отношениях между ними. В двух словах, диаграммы содержат классы, наряду с их атрибутами, также называемыми полями данных, и их поведением, называемыми функциями-членами.

Более конкретно, каждый класс имеет 3 поля: имя вверху, атрибуты прямо под именем, операции/поведение внизу. Связь между различными классами (представленная соединительной линией) составляет диаграмму классов. В приведенном выше примере показана базовая диаграмма классов.

Объектов

Когда обсуждают структурные диаграммы UML, нужно углубиться в понятия, связанные с информатикой. В разработке программного обеспечения классы рассматриваются, как абстрактные типы данных, тогда как объекты являются экземплярами Например, если есть «Автомобиль», который является общим абстрактным типом, то экземпляром класса «Автомобиль» будет «Ауди».

Диаграммы UML-объекта помогают разработчикам программного обеспечения проверить, генерирует ли генерированная абстрактная структура, представляет собой жизнеспособную структуру при реализации на практике, то есть, когда объекты создаются. Некоторые разработчики считают это вторичным уровнем проверки точности. Она отображает экземпляры классов. Точнее, общий класс «Клиент» теперь имеет фактического клиента, например, под названием «Джеймс». Джеймс является экземпляром более общего класса и имеет одинаковые атрибуты, однако, с заданными значениями. То же самое было сделано с учетной записью «Счета и сбережения». Они оба являются объектами их соответствующих классов.

Развертывания

Диаграммы развертывания используются для визуализации взаимосвязи между программным и аппаратным обеспечением. Чтобы быть более конкретным, с диаграммами развертывания можно построить физическую модель того, как программные компоненты (артефакты) развертываются на аппаратных компонентах, известных как узлы.

Типичная упрощенная схема развертывания для веб-приложения будет включать:

  1. Узлы (сервер приложений и сервер баз данных).
  2. Артефакты схема клиентского приложения и базы данных.

Диаграмма пакетов похожа на макросбор для диаграмм UML развертывания, которые мы объясняли выше. Различные пакеты содержат узлы и артефакты. Они группируют диаграммы и компоненты модели в группы, подобно тому, как пространство имен инкапсулирует разные имена, которые несколько взаимосвязаны. В конечном итоге пакет также может быть создан несколькими другими пакетами, чтобы отображать более сложные системы и поведение.

Основная цель диаграммы пакета - показать отношения между различными крупными компонентами, составляющими сложную систему. Программисты находят эту возможность абстракции хорошим преимуществом для использования диаграмм пакетов, особенно когда некоторые детали могут быть исключены из общей картины.

Как и любая другая вещь в жизни, чтобы что-то сделать правильно, нужны правильные инструменты. Для документирования программного обеспечения, процессов или систем используют инструменты, которые предлагают аннотации UML и шаблоны диаграмм. Существуют различные инструменты документации по программным средствам, которые могут помочь нарисовать диаграмму.

Они обычно делятся на следующие основные категории:

  1. Бумага и ручка - это легко. Берется бумага и ручка, открывается синтаксический код UML из Интернета и рисуется любой тип диаграммы, который нужен.
  2. Онлайн-инструменты - существует несколько онлайн-приложений, которые можно использовать для создания диаграммы. Большинство из них предлагают платную подписку или ограниченное количество диаграмм на свободном уровне.
  3. Бесплатные онлайн-инструменты - это почти то же самое, что и платные. Основное различие заключается в том, что платные также предлагают учебные пособия и готовые шаблоны для конкретных диаграмм.
  4. Настольное приложение - типичное настольное приложение для использования для диаграмм и почти любая другая диаграмма - это Microsoft Visio. Он предлагает расширенные возможности и функциональность. Единственным недостатком является то, что нужно заплатить за это.

Таким образом, совершенно очевидно, что UML - важный аспект, связанный с разработкой объектно-ориентированного ПО. Он использует графическую нотацию для создания визуальных моделей системных программ.

Аннотация: Предметом этого курса является The UML - унифицированный язык моделирования. В предыдущей лекции было рассказано о том, что же такое UML, о его истории, назначении, способах использования языка, структуре его определения, терминологии и нотации. Было отмечено, что модель UML - это набор диаграмм. В этой лекции мы рассмотрим такие вопросы: почему нужно несколько видов диаграмм; виды диаграмм; ООП и последовательность построения диаграмм

Прежде чем перейти к обсуждению основного материала этой лекции, давайте поговорим о том, зачем вообще строить какие-то диаграммы. Разработка модели любой системы (не только программной) всегда предшествует ее созданию или обновлению. Это необходимо хотя бы для того, чтобы яснее представить себе решаемую задачу. Продуманные модели очень важны и для взаимодействия внутри команды разработчиков, и для взаимопонимания с заказчиком. В конце концов, это позволяет убедиться в "архитектурной согласованности" проекта до того, как он будет реализован в коде.

Мы строим модели сложных систем, потому что не можем описать их полностью, "окинуть одним взглядом". Поэтому мы выделяем лишь существенные для конкретной задачи свойства системы и строим ее модель, отображающую эти свойства. Метод объектно-ориентированного анализа позволяет описывать реальные сложные системы наиболее адекватным образом. Но с увеличением сложности систем возникает потребность в хорошей технологии моделирования. Как мы уже говорили в предыдущей лекции, в качестве такой "стандартной" технологии используется унифицированный язык моделирования ( Unified Modeling Language , UML ), который является графическим языком для спецификации, визуализации, проектирования и документирования систем. С помощью UML можно разработать подробную модель создаваемой системы, отображающую не только ее концепцию, но и конкретные особенности реализации. В рамках UML -модели все представления о системе фиксируются в виде специальных графических конструкций, получивших название диаграмм.

Примечание . Мы рассмотрим не все, а лишь некоторые из видов диаграмм. Например, диаграмма компонентов не рассматривается в этой лекции, которая является лишь кратким обзором видов диаграмм. Количество типов диаграмм для конкретной модели приложения никак не ограничивается. Для простых приложений нет необходимости строить диаграммы всех без исключения типов. Некоторые из них могут просто отсутствовать, и этот факт не будет считаться ошибкой. Важно понимать, что наличие диаграмм определенного вида зависит от специфики конкретного проекта. Информацию о других (не рассмотренных здесь) видах диаграмм можно найти в стандарте UML.

Почему нужно несколько видов диаграмм

Для начала определимся с терминологией. В предисловии к этой лекции мы неоднократно использовали понятия системы, модели и диаграммы. Автор уверен, что каждый из нас интуитивно понимает смысл этих понятий, но, чтобы внести полную ясность , снова заглянем в глоссарий и прочтем следующее:

Система - совокупность взаимосвязанных управляемых подсистем, объединенных общей целью функционирования.

Да, не слишком информативно. А что же такое тогда подсистема? Чтобы прояснить ситуацию, обратимся к классикам:

Системой называют набор подсистем, организованных для достижения определенной цели и описываемых с помощью совокупности моделей, возможно, с различных точек зрения.

Что ж, ничего не попишешь, придется искать определение подсистемы. Там же сказано, что подсистема - это совокупность элементов, часть из которых задает спецификацию поведения других элементов. Ян Соммервилл объясняет это понятие таким образом:

Подсистема - это система, функционирование которой не зависит от сервисов других подсистем. Программная система структурируется в виде совокупности относительно независимых подсистем. Также определяются взаимодействия между подсистемами.

Тоже не слишком понятно, но уже лучше. Говоря "человеческим" языком, система представляется в виде набора более простых сущностей, которые относительно самодостаточны. Это можно сравнить с тем, как в процессе разработки программы мы строим графический интерфейс из стандартных "кубиков" - визуальных компонентов, или как сам текст программы тоже разбивается на модули, которые содержат подпрограммы, объединенные по функциональному признаку, и их можно использовать повторно, в следующих программах.

С понятием системы разобрались. В процессе проектирования система рассматривается с разных точек зрения с помощью моделей, различные представления которых предстают в форме диаграмм. Опять-таки у читателя могут возникнуть вопросы о смысле понятий модели и диаграммы . Думаем, красивое, но не слишком понятное определение модели как семантически замкнутой абстракции системы вряд ли прояснит ситуацию, поэтому попробуем объяснить "своими словами".

Модель - это некий (материальный или нет) объект , отображающий лишь наиболее значимые для данной задачи характеристики системы. Модели бывают разные - материальные и нематериальные, искусственные и естественные, декоративные и математические...

Приведем несколько примеров. Знакомые всем нам пластмассовые игрушечные автомобильчики, которыми мы с таким азартом играли в детстве, это не что иное, как материальная искусственная декоративная модель реального автомобиля. Конечно, в таком "авто" нет двигателя, мы не заполняем его бак бензином, в нем не работает (более того, вообще отсутствует) коробка передач, но как модель эта игрушка свои функции вполне выполняет: она дает ребенку представление об автомобиле, поскольку отображает его характерные черты - наличие четырех колес, кузова, дверей, окон, способность ехать и т. д.

В ходе медицинских исследований опыты на животных часто предшествуют клиническим испытаниям медицинских препаратов на людях. В таком случае животное выступает в роли материальной естественной модели человека.

Уравнение, изображенное выше - тоже модель, но это модель математическая, и описывает она движение материальной точки под действием силы тяжести.

Осталось лишь сказать, что такое диаграмма . Диаграмма - это графическое представление множества элементов. Обычно изображается в виде графа с вершинами (сущностями) и ребрами (отношениями). Примеров диаграмм можно привести множество. Это и знакомая нам всем со школьных лет блок-схема , и схемы монтажа различного оборудования, которые мы можем видеть в руководствах пользователя, и дерево файлов и каталогов на диске, которое мы можем увидеть, выполнив в консоли Windows команду tree , и многое-многое другое. В повседневной жизни диаграммы окружают нас со всех сторон, ведь рисунок воспринимается нами легче, чем текст...

Но вернемся к проектированию ПО (и не только). В этой отрасли с помощью диаграмм можно визуализировать систему с различных точек зрения . Одна из диаграмм, например, может описывать взаимодействие пользователя с системой, другая - изменение состояний системы в процессе ее работы, третья - взаимодействие между собой элементов системы и т. д. Сложную систему можно и нужно представить в виде набора небольших и почти независимых моделей-диаграмм, причем ни одна из них не является достаточной для описания системы и получения полного представления о ней, поскольку каждая из них фокусируется на каком-то определенном аспекте функционирования системы и выражает разный уровень абстракции . Другими словами, каждая модель соответствует некоторой определенной, частной точке зрения на проектируемую систему.

Несмотря на то что в предыдущем абзаце мы весьма вольготно обошлись с понятием модели, следует понимать, что в контексте приведенных выше определений ни одна отдельная диаграмма не является моделью . Диаграммы - лишь средство визуализации модели, и эти два понятия следует различать. Лишь набор диаграмм составляет модель системы и наиболее полно ее описывает, но не одна диаграмма , вырванная из контекста.

Виды диаграмм

UML 1.5 определял двенадцать типов диаграмм , разделенных на три группы:

  • четыре типа диаграмм представляют статическую структуру приложения;
  • пять представляют поведенческие аспекты системы;
  • три представляют физические аспекты функционирования системы (диаграммы реализации).

Текущая версия UML 2.1 внесла не слишком много изменений. Диаграммы слегка изменились внешне (появились фреймы и другие визуальные улучшения), немного усовершенствовалась нотация , некоторые диаграммы получили новые наименования.

Впрочем, точное число канонических диаграмм для нас абсолютно неважно, так как мы рассмотрим не все из них, а лишь некоторые - по той причине, что количество типов диаграмм для конкретной модели конкретного приложения не является строго фиксированным. Для простых приложений нет необходимости строить все без исключения диаграммы. Например, для локального приложения не обязательно строить диаграмму развертывания. Важно понимать, что перечень диаграмм зависит от специфики разрабатываемого проекта и определяется самим разработчиком. Если же любопытный читатель все-таки пожелает узнать обо всех диаграммах UML , мы отошлем его к стандарту UML (http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML). Напомним, что цель этого курса - не описать абсолютно все возможности UML , а лишь познакомить с этим языком, дать первоначальное представление об этой технологии.

Итак, мы кратко рассмотрим такие виды диаграмм, как:

  • диаграмма прецедентов ;
  • диаграмма классов;
  • диаграмма объектов ;
  • диаграмма последовательностей;
  • диаграмма взаимодействия;
  • диаграмма состояний;
  • диаграмма активности ;
  • диаграмма развертывания .

О некоторых из этих диаграмм мы будем говорить подробнее в следующих лекциях. Пока же мы не станем заострять внимание на подробностях, а зададимся целью научить читателя хотя бы визуально различать виды диаграмм, дать начальное представление о назначении основных видов диаграмм. Итак, начнем.

Диаграмма прецедентов (use case diagram)

Любые (в том числе и программные) системы проектируются с учетом того, что в процессе своей работы они будут использоваться людьми и/или взаимодействовать с другими системами. Сущности, с которыми взаимодействует система в процессе своей работы, называются экторами , причем каждый эктор ожидает, что система будет вести себя строго определенным, предсказуемым образом. Попробуем дать более строгое определение эктора. Для этого воспользуемся замечательным визуальным словарем по UML Zicom Mentor :

Эктор (actor) - это множество логически связанных ролей, исполняемых при взаимодействии с прецедентами или сущностями (система, подсистема или класс). Эктором может быть человек или другая система, подсистема или класс, которые представляют нечто вне сущности.

Графически эктор изображается либо " человечком ", подобным тем, которые мы рисовали в детстве, изображая членов своей семьи, либо символом класса с соответствующим стереотипом , как показано на рисунке. Обе формы представления имеют один и тот же смысл и могут использоваться в диаграммах. "Стереотипированная" форма чаще применяется для представления системных экторов или в случаях, когда эктор имеет свойства и их нужно отобразить (рис. 2.1).

Внимательный читатель сразу же может задать вопрос: а почему эктор, а не актер ? Согласны, слово "эктор" немного режет слух русского человека. Причина же, почему мы говорим именно так, проста - эктор образовано от слова action , что в переводе означает действие . Дословный же перевод слова "эктор" - действующее лицо - слишком длинный и неудобный для употребления. Поэтому мы будем и далее говорить именно так.


Рис. 2.1.

Тот же внимательный читатель мог заметить промелькнувшее в определении эктора слово "прецедент". Что же это такое? Этот вопрос заинтересует нас еще больше, если вспомнить, что сейчас мы говорим о диаграмме прецедентов . Итак,

Прецедент (use-case) - описание отдельного аспекта поведения системы с точки зрения пользователя (Буч).

Определение вполне понятное и исчерпывающее, но его можно еще немного уточнить, воспользовавшись тем же Zicom Mentor "ом:

Прецедент (use case) - описание множества последовательных событий (включая варианты), выполняемых системой, которые приводят к наблюдаемому эктором результату. Прецедент представляет поведение сущности, описывая взаимодействие между экторами и системой. Прецедент не показывает, "как" достигается некоторый результат, а только "что" именно выполняется.

Прецеденты обозначаются очень простым образом - в виде эллипса, внутри которого указано его название. Прецеденты и экторы соединяются с помощью линий . Часто на одном из концов линии изображают рис. 2.3

  • формирование общих требований к поведению проектируемой системы;
  • разработка концептуальной модели системы для ее последующей детализации;
  • подготовка документации для взаимодействия с заказчиками и пользователями системы.
  • UML (Unified Modeling Language - унифицированный язык моделирования) - язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML моделью. UML был создан для определения, визуализации, проектирования и документирования в основном программных систем. UML не является языком программирования, но в средствах выполнения UML-моделей как интерпретируемого кода возможна кодогенерация. Википедия

    Коммерческие продукты

    Microsoft Visio

    Тип: коммерческое ПО

    Популярный программный продукт от компании Microsoft, который позволяет рисовать богатые диаграммы, в том числе UML:

    Начиная с 2010 версии появилась возможность публиковать диаграммы в вебе (SharePoint + Visio Services):

    Visio Viewer - бесплатная программа, которая позволяет просматривать созданные ранее Visio диаграммы. Загрузить можно по %D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B5%20.

    %0A

    Microsoft%20Visual%20Studio%202010

    %0A

    %D0%A2%D0%B8%D0%BF:%20%D0%BA%D0%BE%D0%BC%D0%BC%D0%B5%D1%80%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5%20%D0%9F%D0%9E%20(%D0%B5%D1%81%D1%82%D1%8C%20%D0%B1%D0%B5%D1%81%D0%BF%D0%BB%D0%B0%D1%82%D0%BD%D0%B0%D1%8F%20Express%20%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%8F).

    %0A

    %D0%92%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BD%D0%B5%D0%B9%20%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D0%B8%20Microsoft%20Visual%20Studio%202010%20%D0%BF%D0%BE%D1%8F%D0%B2%D0%B8%D0%BB%D1%81%D1%8F%20%D0%BD%D0%BE%D0%B2%D1%8B%D0%B9%20%D1%82%D0%B8%D0%BF%20%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%B0%20-%20Modelling,%20%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D0%B9%20%D0%BF%D0%BE%D0%B7%D0%B2%D0%BE%D0%BB%D1%8F%D0%B5%D1%82%20%D1%80%D0%B8%D1%81%D0%BE%D0%B2%D0%B0%D1%82%D1%8C%20%D1%80%D0%B0%D0%B7%D0%BB%D0%B8%D1%87%D0%BD%D1%8B%D0%B5%20UML%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B0%20%D0%B8%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D1%8F%D1%82%D1%8C%20%D0%BD%D0%B0%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D1%8F%20%D0%BD%D0%B0%20%D1%81%D0%BE%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%81%D1%82%D0%B2%D0%B8%D0%B5%20%D1%81%20%D0%BD%D0%B5%D0%BE%D0%B1%D1%85%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%20%D0%B0%D1%80%D1%85%D0%B8%D1%82%D0%B5%D0%BA%D1%82%D1%83%D1%80%D0%BE%D0%B9.

    %0A

    %D0%9F%D0%BE%D0%B7%D0%B2%D0%BE%D0%BB%D1%8F%D0%B5%D1%82%20%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D1%82%D1%8C%20Sequence%20Diagram%20%D0%BD%D0%B0%20%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B8%20%D0%BA%D0%BE%D0%B4%D0%B0,%20%D0%B2%D0%B8%D0%B7%D1%83%D0%B0%D0%BB%D0%B8%D0%B7%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D1%82%D1%8C%20%D1%81%D0%B2%D1%8F%D0%B7%D0%B8%20%D0%B2%20%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%B5%20%D0%BC%D0%B5%D0%B6%D0%B4%D1%83%20%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82%D0%B0%D0%BC%D0%B8,%20%D1%81%D0%B1%D0%BE%D1%80%D0%BA%D0%B0%D0%BC%D0%B8%20%D0%B8%20%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0%D0%BC%D0%B8%20%D0%B8%20%D1%82.%D0%B4.

    %0A

    %D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D1%80%20Use%20case%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8B,%20%D0%BD%D0%B0%D1%80%D0%B8%D1%81%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D0%BE%D0%B9%20%D0%B2%20Visual%20Studio%202010:

    %0A%0A

    %D0%9A%D1%80%D0%BE%D0%BC%D0%B5%20%D1%82%D0%BE%D0%B3%D0%BE,%20%D0%B4%D0%BE%D1%81%D1%82%D1%83%D0%BF%D0%B5%D0%BD%20Visualization%20and%20Modeling%20Feature%20Pack%20(%D0%B4%D0%BB%D1%8F%20%D0%BF%D0%BE%D0%B4%D0%BF%D0%B8%D1%81%D1%87%D0%B8%D0%BA%D0%BE%D0%B2%20MSDN),%20%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D0%B9%20%D0%BF%D0%BE%D0%B7%D0%B2%D0%BE%D0%BB%D1%8F%D0%B5%D1%82:

    %0A
    • %D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D1%82%D1%8C%20%D0%BA%D0%BE%D0%B4%20%D0%BD%D0%B0%20%D0%B1%D0%B0%D0%B7%D0%B5%20UML%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%BE%D0%B2
    • %0A
    • %D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D1%82%D1%8C%20UML%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8B%20%D0%B8%D0%B7%20%D0%BA%D0%BE%D0%B4%D0%B0
    • %0A
    • %D0%B8%D0%BC%D0%BF%D0%BE%D1%80%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D1%82%D1%8C%20UML%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8B%20%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%BE%D0%B2,%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8B%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B5%D0%B9,%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8B%20%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F%20%D1%81%20XMI%202.1
    • %0A
    • %D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D1%82%D1%8C%20%D0%B4%D0%B8%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8B%20%D0%B7%D0%B0%D0%B2%D0%B8%D1%81%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D0%B5%D0%B9%20%D0%B4%D0%BB%D1%8F%20ASP.NET,%20C%20%D0%B8%20C++%20%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%BE%D0%B2
    • %0A
    • %D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D1%82%D1%8C%20%D0%B8%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D1%8F%D1%82%D1%8C%20layer%20diagrams%20%D0%B4%D0%BB%D1%8F%20C%20%D0%B8%20C++%20%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%BE%D0%B2
    • %0A
    • %D0%BF%D0%B8%D1%81%D0%B0%D1%82%D1%8C%20%D1%81%D0%BE%D0%B1%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B8%20%D0%B4%D0%BB%D1%8F%20layer%20diagrams
    • %0A

    %D0%A1%D0%BA%D0%B0%D1%87%D0%B0%D1%82%D1%8C%20Visualization%20and%20Modeling%20Feature%20Pack%20%D0%BC%D0%BE%D0%B6%D0%BD%D0%BE%20%D0%BF%D0%BE%20%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B5:%20http://msdn.microsoft.com/ru-ru/vstudio/ff655021%28en-us%29.aspx .

    IBM Rational Rose

    Возможности:

    • Use case diagram (диаграммы прецедентов);
    • Deployment diagram (диаграммы топологии);
    • Statechart diagram (диаграммы состояний);
    • Activity diagram (диаграммы активности);
    • Interaction diagram (диаграммы взаимодействия);
    • Sequence diagram (диаграммы последовательностей действий);
    • Collaboration diagram (диаграммы сотрудничества);
    • Class diagram (диаграммы классов);
    • Component diagram (диаграммы компонент).

    Скриншоты:

    Open source программы

    StarUML

    Возможности:

    • поддержка UML 2.0
    • MDA (Model Driven Architecture)
    • Plug-in Architecture (писать можно на COM совместимых языках: C++, Delphi, C#, VB, ...)

    StarUML написана, в основном, на Delphi, но дописывать компоненты можно и на других языках, например C/C++, Java, Visual Basic, Delphi, JScript, VBScript, C#, VB.NET. Ниже показано несколько скриншотов.

    Диаграмма классов:

    Use case диаграмма:

    ArgoUML

    Поддерживаемые диаграммы:

    • Class
    • State
    • Use case
    • Activity
    • Collaboration
    • Deployment
    • Sequence

    Возможности:

    • Поддержка девяти UML 1.4 диаграмм
    • Платформонезависимая (Java 5+)
    • Стандартная метамодель UML 1.4
    • Поддержка XMI
    • Экспорт в GIF, PNG, PS, EPS, PGML и SVG
    • Языки: EN, EN-GB, DE, ES, IT, RU, FR, NB, PT, ZH
    • Поддержка OCL
    • Forward, Reverse Engineering

    Скриншот: