Оптимизация режимов работы электрооборудования. Внутристанционная оптимизация режимов Основы оптимизации режимов системообразующей электрической сети

Экономия электроэнергии. При этом передача электроэнергии происходит по воздушным сетям линиям электропередачи с напряжением 35 110 150 220 кВ и до 1150 кВ по шкале номинальных напряжений которая утверждена ГОСТом. Пример принципиальной схемы передачи и распределения электроэнергии в электрических сетях показан на рис. Пример принципиальной схемы передачи и распределения электроэнергии в электрических сетях...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЭКСПЛУАТАЦИЯ и ремонт ОБОРУДОВАНИЯ (5 курс)

ЛЕКЦИЯ №15

Оптимизация режимов работы электрооборудования

Учебные вопросы:

2. Выбор электрооборудования по экономическим критериям.

3. Экономия электроэнергии.

1. Оптимизация системы электроснабжения.

Совокупность электроустановок, которые предназначены для обеспечения электрической энергией различных потребителей, называется системой электроснабжения.

Система электроснабжения это комплекс инженерного оборудования и сооружений, которыми являются распределительные сети, трансформаторные подстанции, электрооборудование (системы наружного освещения, станки, насосы и др.).

Потребителями электрической энергии обычно являются электроприемник (агрегат, аппарат, или механизм, который предназначен для преобразования электрической энергии в другой вид энергии), либо группа электроприемников.

Вырабатываемая электростанциями электрическая энергия поступает к потребителям через систему взаимосвязанных передающих, распределяющих и преобразующих электроустановок. При этом передача электроэнергии происходит по воздушным сетям (линиям электропередачи) с напряжением 35, 110, 150, 220 кВ и до 1150 кВ по шкале номинальных напряжений, которая утверждена ГОСТом. Пример принципиальной схемы передачи и распределения электроэнергии в электрических сетях показан на рис. 1.

Рис. 1. Пример принципиальной схемы передачи и распределения

электроэнергии в электрических сетях

ТП -трансформаторные подстанции; Г1,Г2 -генераторы;

РП -распределительный пункт

Необходимо отметить, что электрическая энергия, которая вырабатывается генераторами электростанции, обычно имеющими номинальное напряжение 10-15 кВ, далее поступает в трансформаторы, где ее напряжение повышается обычно до 220 кВ. После этого эта электрическая энергия поступает на сборные шины открытой подстанции этой электростанции. Затем, при помощи ЛЭП, обычно напряжением 220 кВ, электрическая энергия поступает на шины 220 кВ понижающей подстанции, которая может быть связана с помощью ЛЭП также и с другими электростанциями.

На понижающей подстанции с помощью трансформаторов напряжение электрической энергии обычно понижается с 220 кВ до 6 или 10 кВ, причем с этим напряжением электрическая энергия поступает к распределительному пункту.

От распределительного пункта электрическая энергия поступает к подстанциям с силовыми трансформаторами, которые понижают напряжение обычно до 380 или 220 В, а далее эта электроэнергия поступает к потребителям.

Полная электрическая мощность, активная электрическая мощность и реактивная электрическая мощность. Полная электрическая мощность представляет собой максимальную мощность электрического тока, которая может быть использована потребителем электроэнергии. Активная электрическая мощность это мощность, отдаваемая при подключении к источнику тока (источнику электроэнергии) нагрузки, имеющей активное (омическое) сопротивление.

Электрическое сопротивление, например, электрической цепи равно отношению напряжения (U), приложенного к этой цепи, к току (I), протекающему по этой цепи. При большом сопротивлении электрической цепи, прилагаемое к ней напряжение будет большим, а ток маленьким, а при малом сопротивлении электрической цепи, прилагаемое к ней напряжение будет маленьким, а ток большим.

Если нагрузка имеет только активное сопротивление (лампы накаливания, нагревательные приборы), то активная мощность будет равна полной мощности. Полная мощность непосредственно связана с активной и реактивной мощностями. Полная электрическая мощность равна:

S=U х I х cоs f.

Коэффициент активной мощности (cоs f) представляет собою отношение активной мощности к полной мощности.

Чем больше индуктивность или емкость включенного в электрическую сеть потребителя, тем большая доля полной мощности приходится на ее реактивную составляющую. С увеличением индуктивности или емкости нагрузки коэффициент активной мощности уменьшается и величина фактически используемой активной мощности снижается.

Приведем пример расчета коэффициента активной мощности (cоs f).

cоs f = Р (активная мощность в Вт) / S (полная мощность в В . А).

Например, cоs f= 16000 Вт/ 20000 В . А = 0,8.

Обычно значение cоs f указано в технических характеристиках конкретного потребителя электрической энергии.

Непроизводительные потери электроэнергии и мероприятия по сокращению этих потерь. Работа системы электроснабжения связана с наличием непроизводительных потерь электроэнергии, причем в ряде случаев эти потери составляют 10-20 %. В связи с постоянным ростом тарифов на электроэнергию целесообразен для потребителей выбор технологий, устройств или оборудования, которые позволят снизить эти потери.

Следует отметить, что поставщику электроэнергии не важно, что часть активной мощности преобразуется у потребителя в реактивную мощность и поэтому процент эффективного использования потребителем электроэнергии этой электроэнергии существенно уменьшается. Реактивная мощность (потери электроэнергии) наряду с активной мощностью учитывается поставщиками электроэнергии и следовательно подлежит оплате по действующим тарифам, причем составляет значительную часть счета за электроэнергию (в ряде случаев эти потери составляют 10-20 %).

При эксплуатации электрооборудования обычно возникают у потребителей существенные потери активной мощности. Это происходит в результате использования потребителями электроэнергии в промышленности и сельском хозяйстве неэффективного по своей конструкции электрического оборудования, причем даже у лучших образцов этого оборудования, а именно электродвигателей насосов, вентиляторов и компрессоров, различных станков, сварочного оборудования и другого оборудования, имеющего высокую индуктивную или емкостную составляющию мощности (индуктивную или емкостную нагрузку) с низким соs f. Кроме того, например, при прямом пуске асинхронного электродвигателя, большой пусковой ток вызывает резкое снижение напряжения в электрической сети, что приводит к увеличению скольжения остальных работающих электродвигателей.

Следует отметить, что имеются и потребители электроэнергии (например, лампы накаливания, нагревательные приборы), которые не имеют потерь активной мощности, а имеют только активную нагрузку с соs f=1.

Примеры соs f у различного электрооборудования.

Асинхронные электродвигатели - соs f=0,8.

Асинхронные электродвигатели при неполной загрузке (частом холостом ходе) - соs f=0,5.

Сварочные трансформаторы - соs f=0,4.

Мероприятия по сокращению непроизводительных потерь электроэнергии необходимы следующие:

  1. Выявление мест наибольшего значения потерь электроэнергии у потребителей.
  2. Анализ причин повышенных потерь электроэнергии в этих местах.
  3. Определение путей уменьшения этих потерь.
  4. Выполнение необходимых мероприятий для сокращения непроизводительных потерь электроэнергии.

Компенсация реактивной мощности. Необходима компенсация, причем выполняемая самими заинтересованными в этом потребителями, реактивной мощности ими у себя, что гарантированно позволит им повысить процент использования активной мощности, а значит снижать свои потери и соответственно снижать потребление энергоносителей.

Для улучшения качества работы электрической сети применяются, как нерегулируемые устройства компенсации реактивной мощности, так и регулируемые устройства компенсации реактивной мощности, причем у каждого устройства (УКРМ) имеются свои сферы применения.

Нерегулируемые устройства компенсации реактивной мощности.

К нерегулируемым устройствам компенсации реактивной мощности относятся следующие устройства:

БСК (батареи статических конденсаторов);

Реакторы;

ФКУ (фильтрокомпенсирующие устройства);

УПК (устройства продольной компенсации).

Регулируемые устройства компенсации реактивной мощности.

К регулируемым устройствам компенсации реактивной мощности относятся следующие устройства:

УБСК (УФКУ) – управляемые батареи статических конденсаторов или управляемые фильтрокомпенсирующие устройства;

ТУР (тиристорные управляемые регуляторы);

СТК (статические тиристорные компенсаторы);

Активные фильтры (статические компенсаторы реактивной мощности с возможностью фильтрации высших гармонических составляющих тока.

Необходимо отметить, что основным нормативным показателем поддержания в электросети, причем как в целом в электросети, так и в ее отдельных узлах нагрузки, баланса активной мощности, является частота переменного тока и уровень напряжения, симметрия фаз. Поэтому необходимо применение дополнительного источника (устройства компенсации реактивной мощности), который будет осуществлять периодические накопления электроэнергии с последующим возвратом ее в сеть.

БСК (батареи статических конденсаторов). Следует отметить, что их применение приводит к появлению в электрической сети высших гармонических составляющих (ВГС), в результате чего могут возникать резонансные явления на одной из частот ВГС, что сокращает срок службы батареи статических конденсаторов. Поэтому их применение в электрических сетях, где имеются электрические приемники с нелинейными характеристиками неэффективно. Их целесообразно применять для индивидуальной компенсации реактивной мощности электроприемников, которые значительно удалены от электропитания. Подключаются параллельно нагрузке.

Реакторы. Эти устройства обычно применяются для компенсации емкостной (зарядовой) реактивной мощности в высоковольтной линии при передаче электроэнергии на большие расстояния и представляют интерес только для МРСК и. т. д.

ФКУ (фильтрокомпенсирующие устройства). Эти устройства представляют собой усовершенствованные БСК (батареи статических конденсаторов), благодаря дополнительному включению в схему реактора, который включен последовательно батарее статических конденсаторов. При этом реактор выполняет функцию настройки колебательного контура «БСК – реактор – внешняя сеть» на заданную частоту и функцию ограничения токов включения. Эти функции позволяет использовать ФКУ в электрических сетях с высоким содержанием ВГС (высших гармонических составляющих), причем осуществлять фильтрацию ВГС в электросети. Подключаются параллельно нагрузке.

УПК (устройства продольной компенсации). Эти устройства отличаются схемой установки, а именно тем, что конденсаторные батареи подключаются последовательно нагрузке, а не параллельно, как во всех остальных устройствах. Эти устройства используются в основном на ЛЭП, причем использование их экономически эффективно только на вновь сооружаемых объектах. Подключаются последовательно нагрузке.

УБСК (УФКУ) – управляемые батареи статических конденсаторов или управляемые фильтрокомпенсирующие устройства имеющие несколько ступеней регулирования. Эти устройства перспективны для использования в паре с автономными генерирующими установками (ДГУ и т. д.). Необходимо отметить, что их отличие состоит в том, что управляемые конденсаторные установки более эффективны при наличии переменной нагрузки. Если нагрузка, например, изменяется в течение суток, то оптимальный режим может поддерживаться с помощью этих устройств. Подключаются параллельно нагрузке.

ТУР (тиристорные управляемые регуляторы) и СТК (статические тиристорные компенсаторы). Эти устройства обычно используются там, где имеются жесткие требования к стабильности напряжения и его качеству, например, на городских и тяговых подстанциях. При этом тиристорные управляемые регуляторы генерируют индуктивную составляющую, а статические тиристорные компенсаторы индуктивную и емкостную составляющие. Недостатком этих устройств является их высокая стоимость. Подключаются параллельно нагрузке.

Активные фильтры (статические компенсаторы реактивной мощности с возможностью фильтрации высших гармонических составляющих тока). Они обладают свойствами такими же, как и у всех ранее описанных устройств. Эти устройства перспективны для использования. Подключаются параллельно нагрузке.

Технические средства компенсации реактивной мощности у электрооборудования потребителей обычно включают в себя соответствующее электрооборудование, в том числе позволяющее и снизить несимметрию фаз. В качестве основных способов коммутации в устройствах компенсации реактивной мощности обычно применяются устройства управляемые реле (управляемые конденсаторные установки) и управляемые тиристорами (управляемые конденсаторные установки).

Применение тиристорного управления обеспечивает высокое быстродействие работы КУ, отсутствие бросков тока в момент коммутации, и уменьшает старение конденсаторов.

Коммутация конденсаторов в управляемых конденсаторных установках обычно происходит в момент нулевого напряжения.

Пример дефектов трехфазного напряжения, связанных с высокой реактивной мощностью у электрооборудования потребителя электроэнергии показан на рис. 2.

Рис. 2. Пример дефектов трехфазного напряжения, связанных с высокой реактивной мощностью у электрооборудования потребителя электроэнергии

Необходимо отметить, что при выборе мест установки конденсаторных установок необходимо стремиться к подключению их под общий коммутационный аппарат с электроприемником потребителя электрической энергии, чтобы избежать дополнительных затрат на дополнительный аппарат.

В конденсаторных установках необходимо наличие фильтров высших гармоник (снижающих помехи и защищающих конденсаторы).

Реактивная мощность, которая может быть скомпенсирована, соответствует той мощности, которая указана в паспорте установки, а также должен быть указан шаг компенсации (минимальная величина приращения, на которую изменяется емкость включенных конденсаторов).

Следует отметить, что конденсаторные установки необходимо ставить при эксплуатации на обслуживание, например, силами местных электриков предприятия (это электрооборудование обычно находится в их зоне ответственности), что несколько снизит их экономическую эффективность.

Необходимо также отметить, что конкретные технические решения по внедрению конденсаторных установок для компенсации реактивной мощности можно разрабатывать и реализовывать исходя из анализа конкретных технических заданий.

Частотно-регулируемый электропривод. Как уже отмечалось, значительной эффективности при организации энергоснабжения на современном инновационном уровне можно достичь при использовании энергосберегающего регулируемого электропривода с преобразователями частоты. При этом на асинхронных низковольтных либо синхронных высоковольтных двигателях расход энергии сокращается до 50 %. Возможно регулирование скорости двигателя как в диапазоне от близкой к нулю до номинальной, так и выше номинальной. Увеличивается срок службы двигателя и приводного механизма, достигается мягкий, программируемый пуск двигателя. Улучшается технологический процесс и качество продукции, появляется возможность автоматизации и управления от АСУ ТП, сокращаются трудозатраты при эксплуатации привода и др.

К областям применения подобных приводов относятся:

насосы (от подкачек до магистральных);

компрессоры, воздуходувки, вентиляторы систем охлаждения, тягодутьевые вентиляторы котлов;

рольганги, конвейеры, транспортеры и другие транспортировочные устройства;

дробильное оборудование, мешалки, экструдеры;

центрифуги различных типов;

линии производства металлического листа, пленки, картона, бумаги и др.;

буровое оборудование (от насосного до спускоподъемного); устройства откачки нефти из скважин (станки-качалки, погружные насосы и др.);

краны (от тельферов до мостовых);

металлообрабатывающие станки, пилы, прессы и другое технологическое оборудование.

В качестве примера приведем использование преобразователя частоты на приводе водозаборной станции. В этом случае до 50 % сокращается расход электроэнергии за счет автоматического поддержания необходимого давления воды при изменении объема потребления, в 2 — 3 раза увеличивается срок службы двигателя, приводного механизма и электрокоммутационных устройств благодаря исключению пусковых перегрузок по току, гидравлических ударов при пуске электродвигателя. Увеличивается срок службы трубопроводов, сокращается расход воды из-за уменьшения потерь при избыточном давлении, сокращаются трудозатраты при эксплуатации в связи с увеличением межремонтных периодов электропривода.

Повышение эффективности и надежности энергоснабжения при использовании тиристорных преобразователей частоты для синхронных высоковольтных электродвигателей объясняется следующими причинами:

один преобразователь может быть использован для поочередного или группового пуска нескольких электроприводных агрегатов с синхронными двигателями;

пуск двигателя осуществляется плавно с токами меньше номинального значения, что не приводит к перегреву поверхности ротора, ударным механическим воздействиям на обмотки статора. Вследствие этого обеспечивается значительное увеличение ресурса двигателя;

отсутствие ограничений по числу частотных пусков электроприводного агрегата с синхронным двигателем от тиристорного преобразователя частоты. Экспериментально подтверждена возможность 15 пусков в течение одного часа серийных двигателей и более 2 000 пусков в течение одного года без какого-либо ремонта ротора или статора;

остановка электроприводного агрегата за счет рекуперативного электрического торможения обеспечивает возврат электроэнергии в питающую сеть;

реализация режима стационарной точной синхронизации электроприводного агрегата с питающей сетью гарантирует надежное переключение двигателя в сеть без бросков тока и механических ударов;

снижение требований к высоковольтной линии, питающей предприятие, поскольку при пуске очередного электроприводного агрегата не происходит посадки напряжения в линии (пусковой ток в 5 —10 раз меньше по сравнению с реакторным);

мощность тиристорного преобразователя частоты, используемого для пуска разгруженного двигателя, составляет 20... 30 % номинальной мощности электроприводного агрегата, что предопределяет высокие технико-экономические показатели.

Эффективность использования тиристорных преобразователей частоты в составе частотно-регулируемого электропривода с синхронными двигателями определяется не только перечисленными выше факторами, но и значительной экономией электроэнергии и расширением технологических возможностей, особенно в тех случаях, когда требуется большой диапазон регулирования частоты вращения электроприводного агрегата.

Целесообразен для потребителей выбор этих устройств, которые позволят снизить потери электроэнергии, которые в ряде случаев составляют до 20 %.

2. Выбор электрооборудования по экономическим критериям

Одним из способов повышения надежности работы электрооборудования является его правильный выбор. При выборе электрооборудования электроприводов необходимо учитывать: мощность необходимую для привода рабочей машины; исполнение электродвигателя; модификацию электродвигателя; устройство защиты электродвигателя.

В связи с массовостью применения электроприводов даже незначительные погрешности выбора, в конечном счете, приводят к огромному суммарному ущербу.

В настоящее время предлагаемые методики выбора электрооборудования предписывают строго рассчитывать их энергетические параметры. При этом особенности рабочих машин и условий эксплуатации учитываются приближенно. Это было оправдано на первом этапе развития электрификации, но сейчас, при возросших требованиях к электроприводу, требуется учитывать большое число факторов и связей.

Предлагаемая методика оптимального комплектования электроприводов может быть использована для выбора не регулируемых по частоте вращения асинхронных электродвигателей серии "4А" и аппаратуры управления ими. Кроме этого электродвигатели не должны иметь особых требований к пуску и торможению. Эта методика не заменяет рекомендации по выбору электрооборудования, предложенные в книгах:

Мартыненко И. Н., Тищенко Л. Н. Курсовое и дипломное проектирование по комплексной электрификации и автоматизации.-М.:Колос, 1978.

Проектирование комплексной электрификации/Под ред. Л. Г.Прищеп.-М:Колос 1983.

Система ППРЭсх.-М.:Агропромиздат, 1987.

А дополняет их за счет учета более широкого круга факторов.

17.2. Методика оптимального комплектования электроприводов

Методика оптимального комплектования электроприводов состоит из следующих этапов: подготовка исходных данных; выбор мощности электродвигателя; выбор частоты вращения электродвигателя; выбор модификации электродвигателя по пусковому моменту и скольжению; проверка устойчивости пуска и перегрузочной способности; выбор устройства защиты; выбор передаточного устройства.

Рассмотрим более подробно все эти этапы.

17.2.1. Подготовка исходных данных

Для оптимизации электропривода нам необходимо собрать следующие сведения: условия использования; дестабилизирующие воздействия; условия электроснабжения; уровень технической эксплуатации;

Условия использования включают в себя: назначение; эквивалентную мощность рабочей машины, кВт; частоту вращения вала рабочей машины, n, об/мин; пусковой, номинальный и максимальный моменты, Нм; занятость в течение суток, tс, час; занятость в течение года, m, месяц; номинально допустимый простой при отказе электропривода, tд, час.; технологический ущерб, выраженный в долях от стоимости капитального ремонта электродвигателя, v, о. е.;

Дестабилизирующие воздействия включают в себя: условия эксплуатации (по классификации ВИЭСХ - легкие, нормальные, тяжелые); климатические условия; интенсивность отказов, l, год-1; структуру аварийных ситуаций, a1, о. е.; увлажнение и агрессивное воздействие среды, aу; неполнофазный режим, aн; перегрузку, aп; затормаживание ротора, aт; прочие ситуации, aпр.

Условия электроснабжения должны включать в себя следующие данные: мощность трансформатора трансформаторной подстанции, Sтр, кВА; длину и марку проводов линии низкого напряжения, L[км], q [мм2]; напряжение на зажимах электродвигателей, U, В.

Данные о уровне технической эксплуатации должны содержать следующие сведения: периодичность и затраты на обслуживание; затраты на капитальный ремонт; время восстановления работоспособности электропривода после отказа, tв, час.

Лучше всего подготовку данных представить в виде таблицы (см. таблицу 17.1).

Таблица 17.1.

Параметры методики

Составляющие параметров

1.Условия использо-вания

Назна-чение

Экви-валент- ная мощ-ность рабочей машины, кВт

Частота враще-ния вала рабочей машины, n, об/мин

Момент: а)пуско-вой; б)номи-нальный;

в)мак-сималь-ный, Нм

Заня-тость в течение суток, tс, час.

Заня-тость в течение года, m, месяц.

Номи-нально допусти-мый прос-той при отказе электро-привода, tд, час.

Техноло-гический ущерб выраженный в долях от стомости капиталь-ного ремонта электро-двигателя, v,о. е.

2.Дестабилизирую-щие воз-действия

Условия эксплу-атации: а) легкие;

б) нор-мальные; в)тяже - лые

Клима-тичес-кие условия

Интен-сив-ность отказов, l, год-1

Структура аварийных ситуаций a1, о. е.

Увлаж-нение и агрес-сивное воздей-ствие среды, aу, о. е.

Непол-нофазный режим, aн

Пере-грузка, aп

Затор-маживание ротора, aт

Прочие ситуации, aпр

3.Условия электро-снабжения

Мощность трансформатора, ТП, Sтр, кВА

Длина и марка проводов линии электропередач, L[км], q[мм2]

Напряжение на зажимах элект родвигателей, U, В.

4.Уровень техничес-кой эксп - луатации

Периодичность и затраты на об-служивание

Затраты на капитальный ремонт

Время восстановления работоспособности электропривода после отказа, tв, час.

17.2.2. Выбор мощности электродвигателя

Для этого необходимо определить коэффициент нагрузки электродвигателя "b’". Его определяют, учитывая занятость "m" и технологический ущерб "v" по номограммам, приведенным на рисунке 17.1. (см. рис.20.а. Ерошенко Г. П. Курсовое и дипломное проектирование по эксплуатации электрооборудования /1/).

Примечание: в лекциях приведены качественные номограммы. Для расчетов необходимо пользоваться номограммами приведенными в / 1 /.

Определив коэффициент нагрузки "b" по формуле определяют расчетную мощность: Рр=Р/b , и по таблице 17.2 с учетом условий эксплуатации выбирают такой электродвигатель, интервал оптимальных нагрузок которого включает расчетную мощность Рр. Если из-за малых значений tc и v окажется, что Р < Рн, то допустимую перегрузку следует проверить по фактической температуре окружающей среды.

Рисунок 17.1 - Номограмма для определения коэффициента нагрузки электродвигателя

Таблица 17.2 - Оптимальные интервалы нагрузок электродвигателей серии 4А

Номинальная мощность, кВт

Интервал нагрузок в зависимости от условий эксплуатации, кВт

Легкие

Нормальные

Тяжелые

0,60.....1,10

0,50.....1,00

0,45.....0,95

1,11.....1,50

1,01.....1,40

0,96.....1,30

1,51.....2,20

1,41.....1,95

1,31.....1,90

2,21.....3,00

1,96.....2,70

1,91.....2,60

3,10.....4,00

2,71.....3,70

2,61.....3,50

4,10.....5,50

3,71.....5,20

3,51.....5,00

5,60.....7,50

5,21.....6,30

5,01.....6,00

11,0

7,51....11,0

6,31....10,00

6,01.....9,20

15,0

11,10....15,0

10,10....13,50

9,21....12,50

18,5

15,10....18,5

13,60....17,00

12,51....16,00

22,0

18,60....22,0

17,10....20,00

16,01....19,00

17.2.3. Выбор электродвигателя по условиям окружающей среды

Нам необходимо определить допустимую относительную стоимость К’д электродвигателя специального исполнения (сельскохозяйственного, химостойкого и т. п.) Ее определяют по номограмме приведенной на рисунке 17.2.

Для этого необходимо знать интенсивность отказов "l", долю отказов из-за увлажнения “aу", технологический ущерб "v". Далее необходимо найти прейскурантную стоимость "Кс" электродвигателя специализированного исполнения и вычислить фактическую относительную стоимость:

Кдф=Кс/Ко,

где Ко - стоимость электродвигателя основного исполнения IP44 такой же мощности.

Если фактическая относительная стоимость меньше допустимой, т. е. если Кдф < К’д, то целесообразно выбрать электродвигатель специализированного исполнения. В противном случае следует остановиться на электродвигателе основного исполнения, так как удорожание из-за применения электродвигателя специализированного исполнения не компенсируется достигаемым снижением затрат на его капитальный ремонт за нормативный срок службы.

Рисунок 17.2 - Номограмма для определения допустимой относительной стоимости электродвигателя специального исполнения

17.2.4. Выбор устройства защиты

Нам необходимо определить целесообразность использования того или иного вида защиты электрооборудования. Для этого необходимо определить допустимую относительную стоимость устройства защиты "Кз*". Ее определяют по рисунку 17.3 (или см. рис.20.в./1/). При чем необходимо учесть интенсивность отказов "l", технологический ущерб "v" и ожидаемую добротность защиты Рз, т. е. долю устраняемых отказов. Эти данные можно выбрать из таблицы 17.3. (или см. таблицу 4.7./1/).

Рисунок 17.3 - Номограмма для определения допустимой относительной стоимости устройства защиты

Таблица 17.3 - Характеристика сельскохозяйственных машин по возможным технологическим ущербам и аварийным ситуациям

Рабочая машина

aпр

Дробильные и режущие: дробилки, жернова, измельчители, корнерезки и т. п.

0,35

0,30

0,20

0,10

0,20

0,25

0,30

0,20

0,20

0,20

0,10

0,25

Смешивающие и разделяющие: сортировки, триеры, кормосмесители, грануляторы.

0,30

0,25

0,20

0,10

0,20

0,20

0,15

0,30

0,20

0,20

0,25

0,20

Транспортирующие с ручной загрузкой-разгрузкой.

0,40

0,25

0,10

0,10

0,10

0,10

0,40

0,30

0,30

0,10

0,10

0,40

Вентиляционные установки

0,25

0,15

0,30

0,20

0,30

0,30

0,10

0,20

0,10

0,20

0,30

Насосные установки водоснабжения

0,25

0,25

0,45

0,45

0,15

0,15

0,15

0,15

0,25

0,25

Оборудование доильных установок и молочных залов

0,30

0,10

0,15

0,10

0,50

0,15

Прочие рабочие машины

0,30

0,20

0,20

0,20

0,10

0,30

Примечание: В числителе - для животноводства, в знаменателе - для растениеводства; для поточных линий технологический ущерб 1,5...2,5 раза больше чем указанный в таблице.

После этого находят по прейскуранту стоимость "Кз" принимаемой защиты и ее фактическое значение:

Кзф*=Кз/Кд,

где Кд - стоимость выбранного электродвигателя.

Если фактическая стоимость защиты меньше ее допустимой стоимости, то устройство проходит по технико-экономическому критерию т. е.

Кзф*<Кз’

В противном случае целесообразно выбрать другое, менее дорогое устройство защиты. Так, например, УВТЗ в целом не эффективны в электроприводах мощностью менее 4 кВт, при технологическом ущербе v<2 и интенсивности аварийных ситуаций l<0,1, хотя они уменьшают число отказов почти в два раза.

17.3. Пример рационального выбора электрооборудования

Нам необходимо проверить комплектование электропривода вакуумного насоса (РВН-40/350) доильной установки.

Исходные данные.

Условия использования: Р=2,3кВт; n=1450 об/мин.

Занятость в течение суток: tс=8час.

Занятость в течение года: m=6 мес.

Допустимый простой: tд=1 час.

Технологический ущерб в долях от стоимости капитального ремонта электродвигателя: v=5 о. е.(определяется по табл.2.)

Дестабилизирующие воздействия (в сумме все дестабилизирующие воздействия равны 1):

Условия эксплуатации - нормальные;

Интенсивность отказов - l=0,3, см. табл.2.;

Увлажнение и агрессивное воздействие среды - aу=0,1, см. табл.2.;

Неполнофазный режим - aн=0,15, см. табл.2.;

Затормаживание ротора - aт=0,5, см. табл.2.;

Прочие ситуации - aпр=0,15, см. табл.2.;

Перегрузка - aп=0,1, см. табл.2.;

Условия электроснабжения: Sтр=160 кВА; L=0,25 км; q=35мм2;

U=380/220 В.

Техническая эксплуатация - по системе ППР и ТО.

Время восстановления работоспособности - tв=6 час.

Выбор мощности электродвигателя. Зная значения tс, m и v по рис.1. находим коэффициент нагрузки электродвигателя "b", b=0,618. Тогда расчетная мощность: Рр=Р/b=2,3/0,618=3,72 кВт.

По табл.2. для нормальных условий эксплуатации выбираем мощность электродвигателя, она находится в диапазоне 3,71....5,20 кВт. Этому интервалу соответствует электродвигатель мощностью 5,5 кВт.

Выбор частоты вращения электродвигателя. Так как частота вращения вала рабочей машины равна 1450 об/мин, то принимаем электродвигатель с частотой вращения поля статора 1500 об/мин.

Выбор модификации электродвигателя по пусковому моменту и скольжению. При выборе модификации электродвигателя по пусковому моменту и скольжению необходимо учитывать условия пуска электродвигателя и рабочей машины.

Проверка устойчивости пуска и перегрузочной способности. Так как мощность трансформатора больше мощности электродвигателя более чем в три раза и длина линии менее 300 м, то проверку на устойчивость при пуске производить не требуется. Почему мы сделали такой вывод, рассмотрим более подробно в следующей лекции, а сейчас ограничимся этим допущением.

Выбор электродвигателя по условиям окружающей среды. По рис.2. находим допустимую относительную стоимость электродвигателя специализированного исполнения (зная l, aу и v), она равна 1,18. Зная ее мы можем определить фактическую относительную стоимость:

Кдф*=Кс/Ко=77/70=1,1,

где Кс=77 у. е., стоимость электродвигателя 4А112М4У3сх;

Ко=70 у. е., стоимость электродвигателя 4А112М4У3.

В нашем случае Кдф*<Кд*, значит мы должны выбрать электродвигатель 4А112М4У3сх.

Выбор устройства защиты. По рис.3. находим допустимую относительную стоимость устройства защиты "Кз*", учитывая, что Рз=aн+aп+aпр и учитывая еще l и v. В нашем случае Кз*=1,1. Учитывая большой технологический ущерб (v=5), принимаем защиту УВТЗ и определяем Кзф*. Так как УВТЗ стоит 48у. е., а электродвигатель стоит 77у. е., тогда Кзф*=Кз/Кд=48/77=0,6. Так как Кзф*<Кз* (0,6<1,1) окончательно выбираем УВТЗ.

Выбор передаточного устройства. Так как большая доля аварийных ситуаций приходится на заклинивание (aт=0,5) насоса, то целесообразно предусмотреть соединение электродвигателя с рабочей машиной через предохранительную муфту или клиноременную передачу.

3. Экономия электроэнергии

Основные принципы экономии электроэнергии. Вопросы экономии электроэнергии приобретают в настоящее время особое значение. Следует отметить, что экономия электроэнергии не есть простое ограничение полезного ее потребления.

Экономия электроэнергии должна состоять:

Из уменьшения потерь электроэнергии;

Из снижения энергоемкости продукции.

Во всех случаях мероприятия по экономии электроэнергии необходимо рассматривать с народнохозяйственных позиций. Другими словами, следует внедрять только те мероприятия, которые окупятся не более чем за нормативный срок окупаемости, равный 6,6 года. Это означает, что дополнительные затраты на экономию электроэнергии оправданы, если экономия электроэнергии составляет не менее 100 кВт´ч в год в течение нормативного срока окупаемости.

Успешная работа по экономии электроэнергии связана с разработкой плана организационно-технических мероприятий.

Составление плана организационно-технических мероприятий .

Нам необходимо определиться в том, что относят к организационно-техническим мероприятиям:

К организационно-техническим мероприятиям условно относят те мероприятия, на осуществление которых не требуется сверхнормативных капитальных вложений или эксплуатационных издержек.

На следующем этапе определим цель составления этого плана.

Цель - выявление очагов потерь или нерационального использования электроэнергии и разработка конкретных эффективных способов наибольшей экономии электроэнергии.

Очаги потерь или нерационального использования электроэнергии выявляют путем анализа состояния эксплуатации электрооборудования и потребления электроэнергии. К известным способам экономии электроэнергии можно отнести: поддержание электрооборудования в исправном состоянии; выбор и поддержание оптимальных режимов работы оборудования; автоматизация технологических процессов; внедрение новой энергосберегающей техники и технологии.

Выявление очагов потерь или мест нерационального использования электроэнергии.

Одной из главных задач руководителя электротехнической службы хозяйства является рациональное использование электрической энергии, ее экономия при выполнении тех или иных технологических процессов. В это понятие входит и снижение потерь электрической энергии.

Выявить очаги потерь электроэнергии бывает довольно сложно. Однако существуют методы, упрощающие этот процесс. Среди них можно выделить: функционально-стоимостной анализ (ФСА); метод контрольных вопросов (МКВ).

Следует отметить, что правильно провести ФСА довольно сложно не подготовленному специалисту. Для его выполнения следует обращаться к специалистам - инженерам ФСА. Однако таких специалистов (к сожалению) в сельскохозяйственном производстве нет, их просто не готовили и не готовят. И другой аргумент, этот метод предпочтительнее применять для решения сложных, глобальных проблем. Поэтому более предпочтительным в таком случае будет использование метода контрольных вопросов (МКВ). Контрольные вопросы (КВ) могут изменяться пользователем и применяться в удобной для него форме.

Предлагаемый вашему вниманию КВ составлены из списков контрольных вопросов Эйлоарта, А. Ф. Осборна, ФСА и ТРИЗ (теории решения изобретательских задач). Данный вопросник состоит из четырех блоков вопросов. Первый блок вопросов направлен на выявление главной функции, которую выполняет электроэнергия в технологическом процессе и функций, обеспечивающих ее, учету возникающих нежелательных эффектов и традиционных средств их устранения. Часть вопросов ориентирована на формулировку идеального конечного результата (ИКР) и уходу от традиционных основ функционирования системы, использующей электрическую энергию. Второй блок позволяет анализировать взаимодействие электрической энергии с внешней средой, управляющей системой и на выявление ограничений и возможности свертывания. Третий блок направлен на анализ подсистем и их взаимосвязей. Четвертый блок направлен на анализ возможных неисправностей и уточнение ИКР.

При работе с предлагаемым вопросником необходимо ответы излагать в простой, доступной форме, без специальных терминов. Это вроде бы простое требование, однако, выполнить его очень сложно. А теперь рассмотрим этот вопросник.

Первый блок

1. Какова главная функция электроэнергии в данном технологическом процессе?

2. Что надо делать, чтобы выполнялась главная функция?

3. Какие проблемы возникают при этом?

4. Как обычно с ними можно бороться?

5. Какие и сколько функций выполняется с помощью электроэнергии в этом технологическом процессе, какие из них полезные, а какие вредные?

6. Нельзя ли часть функций выполняемых с помощью электроэнергии в этом технологическом процессе сократить?

7. Нельзя ли часть функций выполняемых с помощью электроэнергии в этом технологическом процессе увеличить?

8. Нельзя ли часть вредных функций выполняемых с помощью электроэнергии в этом технологическом процессе перевести в полезные и наоборот?

9. Что представляло бы собой идеальное выполнение главной функции?

10. Как иначе можно выполнить основную функцию?

11. Нельзя ли упростить технологический процесс, добиваясь не 100% полезного эффекта, а чуть меньше или больше?

12. Перечислите основные недостатки традиционных решений.

13. Постройте, если можно, механическую, электрическую, гидравлическую или иную модель функционирования или распределения потоков в технологическом процессе.

Второй блок

14. Что произойдет если убрать электроэнергию из технологического процесса и заменить ее другим видом энергии?

15. Что произойдет если заменить электроэнергию в технологическом процессе другим видом энергии?

16. Измените технологический процесс с точки зрения:

Скорости работы (быстрее или медленнее в 10, 100, 1000 раз);

Времени (средний цикл работы уменьшите до нуля, увеличьте до бесконечности);

Размеров (производительность технологического процесса очень большая или очень маленькая);

Стоимость единицы продукции или услуги (большая или маленькая).

17. Определите общепринятые ограничения и причины их возникновения.

18. В какой отрасли техники или другой деятельности наилучшим образом выполняется данная или похожая главная функция и нельзя ли позаимствовать одно из этих решений?

19. Можно ли упростить форму, усовершенствовать прочие элементы технологического процесса?

20. Можно ли заменить специальные “блоки” стандартными?

21. Какие дополнительные функции может выполнять электрическая энергия в технологическом процессе?

22. Можно ли изменить основу выполнения технологического процесса?

23. Можно ли уменьшить отходы или использовать их?

24. Сформулируйте задачу на конкурс “Преврати нерациональные расходы электроэнергии в доходы”.

Третий блок

25. Можно ли разделить технологический процесс на части?

26. Можно ли объединить несколько технологических процессов?

27. Можно ли “мягкие” связи сделать “жесткими” и наоборот?

28. Можно ли “неподвижные” блоки сделать ”подвижными” и наоборот?

29. Можно ли использовать работу оборудования на холостом ходу?

30. Можно ли перейти от периодического действия к непрерывному или наоборот?

31. Можно ли поменять последовательность операций в технологическом процессе если нет то почему?

32. Можно ли ввести или исключить предварительные операции?

33. Где в технологическом процессе заложены излишние запасы, нельзя ли их сократить?

34. Нельзя ли использовать более дешевые источники энергии?

Четвертый блок.

35. Определите и опишите альтернативные технологические процессы.

36. Какой из элементов технологического процесса наиболее энергоемкий, нельзя ли его отделить, снизить в нем потребление электроэнергии?

37. Какие факторы в процессе выполнения технологического процесса наиболее вредны?

38. Нельзя ли использовать их с пользой для дела?

39. Какое оборудование в технологическом процессе изнашивается в первую очередь?

40. Какие ошибки наиболее часто совершает обслуживающий персонал?

41. По каким причинам чаще всего нарушается технологический процесс?

42. Какая неисправность наиболее опасна для вашего технологического процесса?

43. Как предотвратить эту неисправность?

44. Какой технологический процесс, для получения продукции, вам наиболее подходит и почему?

45. Какую информацию о ходе технологического процесса вы бы тщательно скрывали от конкурентов?

46. Узнайте мнение о потреблении электроэнергии, данным технологическим процессом, совершенно не осведомленных людей.

47. В каком случае потребление электроэнергии в технологическом процессе отвечает идеальным нормам?

48. Какие вопросы еще не заданы? Задайте их сами и ответьте на них.

Представленный вопросник не является окончательным, его можно корректировать и дополнять. После небольшой корректировки его можно использовать для выявления очагов потерь любых видов энергии.

PAGE \* MERGEFORMAT 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

13545. АНАЛИЗ РЕЖИМОВ РАБОТЫ ЛАЗЕРОВ 612.93 KB
Параметры лазерного излучения Лазеры являются наиболее распространенными и наиболее перспективными квантовыми приборами. Обычно под лазерами понимают квантовые автогенераторы причем блок – схема практически любого такого генератора может быть представлена схемой рис. Рис 1 Такое возбуждение может быть импульсным непрерывным или комбинированным причем не только по времени возбуждения но и по способам; 31 и 32 зеркала образующие открытый резонатор УЭуправляющий элемент обычно расположенный внутри лазера и служащий для реализации того...
6088. ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ РАБОТЫ ЭЛЕКТРООБОРУДОВАНИЯ 20.73 KB
Энергетические показатели электрооборудования Сигналом о неблагополучии а следовательно и необходимости обследования степени эффективности энергоснабжения на промышленном предприятии служит резкое отличие фактических удельных расходов энергии от нормативных показателей. В последнем случае доверительность резко повышается если использовать автоматизированные системы учета и контроля за потреблением электроэнергии а именно каналы связи с автоматизированным рабочим местом АРМ контроля расхода электроэнергии. имеется связь между...
20318. Моделирование статических режимов работы элементов автономной ветродизельной электроэнергетической системы 76.31 KB
1 Обоснование целесообразности применения ветродизельных электроэнергетических систем для электроснабжения автономного потребителя : автореф. дис. … канд. техн. наук: 05.09.03 / Коротков А.В.; Санкт-Петербургский государственный политехнический университет. - Электрон. текстовые дан. (1 файл: 283 Кб). - Санкт-Петербург, 2013. - Загл. с титул. экрана. - Электронная версия печатной публикации. - Свободный доступ из сети Интернет (чтение, печать, копирование). - Текстовый файл. - Adobe Acrobat Reader 7.0. - .

5. Онлайн Электрик: Интерактивные расчеты систем электроснабжения. - 2008 [Электронный ресурс]. Доступ для зарегистрированных пользователей. Дата обновления: 08.02.2015. - URL: http://www.online-electric.ru (дата обращения: 08.02.2015).

УДК 621.316.9

Ф. П. ШКРАБЕЦ (Национальный горный университет Украины, Днепропетровск), А. И. КОВАЛЕВ (ОАО «Южный ГОК», Кривой Рог)

ОПТИМИЗАЦИЯ РЕЖИМОВ РАБОТЫ НЕЙТРАЛИ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЕЙ

Розглянуто варiанти заземления нейтралi електричних мереж i представлеш рекомендацп з пiдвищення рiвня експлуатацшно! надiйностi й електробезпечностi розподшьних мереж напругою 6 кВ на основi обме-ження й придушення перехвдних процесiв при несиметричних ушкодженнях.

Рассмотрены варианты заземления нейтрали электрических сетей и представлены рекомендации по повышению уровня эксплуатационной надежности и электробезопасности распределительных сетей напряжением 6 кВ на основе ограничения и подавления переходных процессов при несимметричных повреждениях.

The variants of grounding the neutral wire of electric networks are considered and the recommendations are presented on increasing the level of operational reliability and electric safety of distribution networks with 6 kV voltage on the basis of limitation and suppression of transitional processes at asymmetrical damages.

Состояние нейтрали сети имеет непосредственное отношение к вероятности возникновения аварийного состояния, поскольку преобладающее число нарушений в сетях начинается с замыкания на землю. Эффективность любого вида режима работы нейтрали электрической сети определяется целесообразным технико-экономическим соответствием бесперебойности электроснабжения потребителей, величины капиталовложений и эксплуатационных расходов. При этом учитывается, что всякого рода аварийные отключения линий электропередачи и подстанций, как правило, приводят либо к полному обесточиванию потребителей, либо к ограничениям потребления электроэнергии. Перебои в электроснабжении наносят тем больший ущерб, чем выше энергоемкость потребителей и чем больше потребителей, у которых прекращение подачи электроэнергии недопустимо по условиям непрерывности технологического процесса. Повышение уровня надежности электроснабжения и распределительных сетей систем электроснабжения, улучшение условий электробезопасности зависит от успешного решения комплекса вопросов, среди которых важное место занимают вопросы оптимизации режимов работы нейтрали электрических сетей.

Целью работы является представить результаты исследований по повышению уровня эксплуатационной надежности и электробезопасности распределительных сетей напряжением 6 кВ за счет оптимизации режимов нейтрали.

Эффективностью компенсации емкостного тока замыкания на землю (компенсированная

нейтраль) называется способность дугогасящих аппаратов ограничивать токи через место повреждения, перенапряжения и скорости восстанавливающихся напряжений после гашения заземляющей дуги. Показателем эффективности компенсации является отношение количества замыканий на землю, не развившихся в короткие замыкания, к общему их количеству

Эк = 1 - «к.з/Побщ. (1)

При сравнении показателей эффективности работы электрических сетей с различными способами заземления нейтрали, кроме удовлетворения требования по обеспечению надежности электроснабжения потребителей, серьезное внимание обращается на основные параметры сетей, влияющие на эксплуатационные характеристики систем электроснабжения, к которым можно отнести:

1. Уровни изоляции и защита от перенапряжений (устойчивость к перенапряжениям).

2. Селективность действия релейной защиты и простота ее выполнения.

3. Отключение коротких замыканий и возможность нарушения устойчивости параллельной работы (в мощных энергосистемах).

4. Влияние на линии связи, каналы телемеханики и средства промышленной автоматики.

5. Заземляющие устройства линий и подстанций и безопасность напряжений прикосновения и шаговых напряжений.

В отношении электрических сетей и оборудования напряжением 6 кВ, работающих с компенсацией емкостного тока замыкания на

землю, следует отметить, что при резонансных настройках или при незначительных расстройках компенсации в сетях запасы электрической прочности изоляции по отношению к воздействующим перенапряжениям увеличиваются до 30 %. Такие запасы обеспечивают высокую надежность работы систем электроснабжения.

Компенсация емкостного тока замыкания на землю является бесконтактным средством ду-гогашения. В сравнении с сетями, работающими с изолированной нейтралью, а также с сетями, работающими с эффективным и неэффективным заземлением нейтрали, сети с индуктивностью в нейтрали, настроенной в резонанс с емкостью сети относительно земли, обладают следующими выгодными для эксплуатации качествами:

Уменьшается ток через место повреждения до минимальных значений (в пределе до активных составляющих и высших гармоник);

Обеспечивается надежное дугогашение (предотвращается длительное воздействие заземляющей дуги);

Улучшаются условия безопасности при растекании аварийных токов в земле;

Облегчаются требования к заземляющим устройствам;

Ограничиваются перенапряжения, возникающие при дуговых замыканиях на землю, до значений 2,5...2,6 фазного напряжения сети (при степени расстройки до 5 %) - безопасных для изоляции оборудования и линий;

Значительно снижаются скорости восстановления напряжений на поврежденной фазе, что способствует восстановлению диэлектрических свойств места повреждения в сети после каждого погасания перемежающейся заземляющей дуги;

Предотвращаются набросы реактивной мощности на источники питания при дуговых замыканиях на землю, что способствует сохранению качества электроэнергии у потребителей (при резонансной настройке);

Резко уменьшается вероятность развития в сети феррорезонансных процессов (в частности, самопроизвольных смещений нейтрали).

Расстройка режима компенсации более чем на 5 % от резонансного приводит к резкому снижению эффективности в части кратности перенапряжений, развития феррорезонансных процессов и т.п. Кроме того следует отметить, что в случаях, когда используются неправильные схемы присоединения устройств компенсации емкостных токов (дугогасящих аппаратов) и допускаются неправильные оперативные

и автоматические действия, компенсация емкостных токов замыкания на землю не только утрачивает частично или полностью свою эффективность, но и становится причиной многоместных повреждений изоляции сети. Опасные для изоляции сети по уровню и длительно действующие феррорезонансные перенапряжения возникают в случаях, когда трансформатор с устройством компенсации емкостных токов оказывается подключенным к сети не всеми фазами.

Анализ результатов исследований влияния заземления нейтрали электрических сетей на надежность и условия электробезопасности систем электроснабжения в целом, на повреждаемость распределительных сетей и электрооборудования, а также на функциональные характеристики релейной защиты в частности, позволяет дать оценку каждому конкретному режиму работы нейтрали и представить рекомендации, направленные на усиление позитивных показателей соответствующих режимов.

Исследования показали, что самый низкий уровень эксплуатационной надежности соответствует сетям с полностью изолированной нейтралью, а также сетям с компенсированной нейтралью при расстройках компенсации на 20 % и более от резонансной. Это обусловлено высокой повреждаемостью элементов систем электроснабжения от действия внутренних перенапряжений и феррорезонансных явлений

Следует отметить, что наиболее высокая эксплуатационная надежность обеспечивается в распределительных сетях с наложением дополнительной активной составляющей на ток замыкания на землю (сети с резистором в нейтрали). В таких сетях при определенных условиях резко ограничиваются уровни внутренних перенапряжений, сопровождающих несимметричные повреждения, практически исключается развитие феррорезонансных процессов, что, соответственно, способствует уменьшению повреждаемости элементов сети. Кроме того, при этом практически исключается ложная работа устройств защиты от замыканий на землю за счет резкого подавления (практически устранения) переходных процессов при появлении и отключении повреждений.

По условиям обеспечения электробезопасности электрических сетей при непосредственном прикосновении человека к токоведущим частям ни один из возможных режимов нейтрали нельзя признать благоприятным. Независимо от режима нейтрали с учетом реальных па-

раметров изоляции относительно земли распределительных сетей и времени действия устройств защиты, а также времени действия применяемой в таких сетях коммутационной аппаратуры, значения тока через тело человека будут значительно превышать безопасные уровни. Следует, однако, отметить, что степень косвенной опасности электрической сети, например от действия напряжения прикосновения (при прикосновении человека к корпусам электрооборудования и машин, оказавшимся под напряжением вследствие повреждения изоляции одной из фаз), в значительной степени зависит от режима нейтрали. Для установившегося режима однофазного замыкания в этом случае предпочтение следует отдать электрическим сетям с компенсированной нейтралью при резонансной (или близкой к резонансной) настройке компенсирующего устройства. Если учитывать переходные процессы, сопровождающие металлические и дуговые однофазные замыкания на землю, то наиболее благоприятным следует считать электрическую сеть с резистором в нейтрали.

Учитывая изложенное, в сетях напряжением 6...10 кВ, работающих с полностью изолированной от земли нейтралью, предлагается режим работы с резистором в нейтрали, т.е. наложение в аварийном режиме на емкостный ток замыкания активной составляющей, значение которой выбирается из условия

А =(0,4* 1) или Яа =(1 *2,5))1с (2)

Для создания дополнительного искусственного активного тока замыкания на землю могут использоваться высоковольтные резисторы, включаемые между нейтральной точкой сети и землей. В этом случае высоковольтный резистор может включаться:

В нейтраль силового трансформатора при включении его обмоток в звезду и выведенной нулевой точкой;

В нейтраль первичной обмотки специального заземляющего трансформатора;

Между каждой фазой и землей трех сопротивлений, соединенных в звезду с искусственной нулевой точкой.

Кроме того, создание искусственного дополнительного активного тока однофазного замыкания на землю может быть обеспечено включением низковольтного резистора одним из следующих способов:

В качестве нагрузочного резистора вторичной обмотки специального однофазного транс-

форматора, первичная обмотка которого включается между нейтральной точкой сети и землей;

В качестве нагрузочного резистора, подключенного к вторичным обмоткам трех однофазных трансформаторов, включенных по схеме разомкнутого треугольника (первичные обмотки включаются при этом в звезду с заземленной нулевой точкой).

При превышении токов замыкания на землю регламентируемых ПУЭ значений устанавливаются дугогасящие реакторы, которые, как правило, не оборудованы устройствами автоматической настройки индуктивности в резонанс с емкостью сети. Кроме того, зачастую эксплуатационная динамика указанных сетей может превышать 20-процентное изменение параметров изоляции сетей относительно земли (например, карьерные сети). Для указанных сетей нами предлагаются следующие рекомендации по оптимизации заземления нейтрали.

1. Если в сетях напряжением 6. 10 кВ значение емкостного тока однофазного замыкания на землю составляет значение до 10 А и они работают с нейтралью, полностью изолированной от земли, предлагается режим работы с резистором в нейтрали, т.е. наложение в аварийном режиме на емкостный ток замыкания активной составляющей, значение которой выбирается из условия (2). Такой режим обеспечивает подавление переходных процессов, улучшение работоспособности устройств защиты от замыканий на землю, исключает феррорезонансные явления, чем и достигается повышение уровня электробезопасности и надежности.

2. При емкостном токе однофазного замыкания на землю более 10 А предлагается использовать комбинированный режим работы нейтрали. Суть комбинированного режима заземления нейтрали состоит в том, что кроме создания индуктивной составляющей тока однофазного замыкания на землю, предлагается также одновременно накладывать на ток замыкания и активную составляющую.

Таким образом, комбинированный режим заземления нейтрали - это компенсированная сеть с наложением в аварийном режиме дополнительной активной составляющей. Значение накладываемой на сеть активной составляющей тока замыкания на землю должно быть на уровне 30.50 % от емкостной составляющей, т.е., выбираться из условия

1а =(0,3 * 0,5) 1С. (3)

Такой режим обеспечивает подавление переходных процессов, улучшение работоспособности устройств защиты (сигнализации) от замыканий на землю, исключает феррорезо-нансные явления, чем и достигается повышение уровня электробезопасности и надежности и обеспечиваются эксплуатационные показатели, адекватные сетям с резистором в нейтрали даже при расстройках дугогасящего реактора до 50 %.

На рис. 1 для сравнения показаны зоны максимальной кратности перенапряжений от степени расстройки компенсации от резонансного режима в сети с компенсированной нейтралью (зона 1) и в сети с комбинированным режимом работы нейтрали (зона 2). Верхняя и нижняя границы зон соответствуют значениям коэффициента у, равном соответственно 1 и 0,8, который учитывает физические характеристики сети, относительное место повреждения и прочее.

44 40 316 32 28 24 22

Рис. 1. Зависимость кратности перенапряжений от степени расстройки реактора при компенсированном (1) и комбинированном (2) режиме заземления нейтрали

БИБЛИОГРАФИЧЕСКИМ СПИСОК

1. Лихачев, Ф. В. Повышение надежности распределительных сетей 6-10 кВ [Текст] / Ф. В. Лихачев // Электрические станции. - 1981. -№ 11. - С. 51-56.

2. Пивняк, Г. Г. Несимметричные повреждения в электрических сетях карьеров: Справочное пособие [Текст] / Г. Г. Пивняк, Ф. П. Шкрабец. -М.: Недра, 1993. - 192 с.

3. Серов, В. И. Методы и средства борьбы с замыканиями на землю в высоковольтных системах горных предприятий [Текст] / В. И. Серов, В. И. Щуцкий, В. М. Ягудаев. - М.: Наука, 1985. - 136 с.

4. Сирота, И. М. Влияние режимов нейтрали в сетях 6-35 кВ на условия безопасности [Текст] / И. М. Сирота // Режимы нейтрали в электрических системах. - К., 1974. - С. 84-104.

5. Стогний, Б. С. Анализ эффективности существующих режимов нейтрали сетей 6-35 кВ в энергетике [Текст] / Б. С. Стогний, В. В. Масляник, В. В. Назаров // Науково-прикладний журнал «Техшчна електродинашка». - К., 2002. -№ 3. - С. 37-41.

6. 3 Управление потоками мощности в замкнутых электрических сетях Замкнутые электрические сети, как правило, являются неоднородными, xapaктеризующимися различным отношением Xi/Ri на участках. Неоднородность сети объясняется: - применением различных площадей сечений на разных участках; - наличием трансформаторов, соединяющих в контуре линии разных номинальных напряжений (в этом случае неоднородность особенно сильна). На рисунке 6. 5 естественная мощность, выходящая в линию от источника А, будет равна: (6. 18) 2

где i – номер узла нагрузки; n – число узлов нагрузки в сети. Для однородной сети выражение (6. 18) может быть записано через активные сопротивления участков: (6. 19) Рис. 6. 5 Схема сети: (а) - замкнутая; (б) – разрезанная по источнику 3 питания

Запишем выражение для потерь активной мощности в сети на рис. 6. 5: (6. 20) Выразим мощности S 12 и SБ через SА, S 1 и S 2: (6. 21) Подставим выражения (6. 21) в формулу (6. 20), заменив полные мощности через соответствующие активные и реактивные: (6. 22) 4

Найдем экономичные мощности РАэ и QАэ, соответствующие минимуму потерь активной мощности. Для этого возьмем частные производные выражения (6. 22) по РА и QА и приравняем их нулю: (6. 23) После преобразований получим: (6. 24) Или через полные мощности: (6. 25) 5

В общем виде (6. 25) будет выглядеть так: (6. 26) Сравнение выражения (6. 18) с (6. 26), а также (6. 19) с (6. 26) позволяет сделать следующие выводы: 1) в неоднородной сети естественное распределение мощностей не совпадает с экономичным. 2) в однородной сети естественное распределение мощностей одновременно является экономичным. Таким образом, можно сделать вывод о том, что неоднородность сети вызывает в контуре уравнительную мощность (6. 27) которая приводит к перераспределению потоков мощности по 6 ветвям и увеличению потерь мощности.

Отсюда следует, что для перехода от режима сети с естественным распределением мощностей к экономичному режиму необходимо в контуре компенсировать уравнительную мощность SУ. Это можно сделать, создав в контуре принудительную уравнительную мощность SУ. П, направленную навстречу SУ: (6. 28) Для получения мощности SУ. П в контур необходимо ввести соответствующую ЭДС EЭ. Тогда: (6. 29) где ZК – сопротивление контура. 7

Отсюда требуемая ЭДС EЭ: (6. 30) После преобразований получим продольную EЭ/ и поперечную EЭ// ЭДС, которые необходимо создать в контуре для получения экономичного распределения мощностей: (6. 31) (6. 32) 8

Src="https://present5.com/presentation/34965670_40079705/image-9.jpg" alt="Поскольку в сетях напряжением 110 к. В и выше X>>R, то, если принять R=0,"> Поскольку в сетях напряжением 110 к. В и выше X>>R, то, если принять R=0, тогда: (6. 33) (6. 34) Пример создания положительных уравновешивающих ЭДС EЭ/ и EЭ// показан на рисунке 6. 6, а, где U - напряжение с учётом воздействия ЭДС. Из формул (6. 33) и (6. 34) можно записать: (6. 35) (6. 36) 9

Отсюда следует, что введение в контур продольной ЭДС в основном оказывает влияние на перераспределение реактивных мощностей, а поперечной ЭДС – на перераспределение активных мощностей. Рис. 6. 6 Векторная диаграмма с ЭДС (а) и схема неоднородной замкнутой сети (б) 10

ЭДС в контуре создается трансформаторами, включенными в данный конур. Если в контуре содержится один трансформатор, то (6. 37) где U 0 – напряжение опорного узла; k. Т – коэффициент трансформации трансформатора, учитывающий изменение величины и фазы напряжения. Если в контур включено n трансформаторов, то (6. 38) где коэффициенты трансформации направлению обхода контура. подставляются по 11

Для создания продольной ЭДС достаточно иметь обычные трансформаторы (автотрансформаторы) с ответвлениями. В этом случае (6. 39) При этом трансформаторы с РПН позволяют получить в контуре регулируемую ЭДС. Для создания поперечной или продольно-поперечной ЭДС применяют специальные вольтодобавочные трансформаторы (ВДТ). Пример включения их в контур показан на рисунке 6. 6, б. 12

6. 4 Выбор установки трансформаторов регулирования в замкнутой сети поперечного Конкретный выбор числа и мест установки трансформаторов поперечного регулирования в замкнутой электрической сети с многими контурами и несколькими номинальными напряжениями представляет собой достаточно сложную задачу проектирования. Рассмотрим один из возможных алгоритмов решения данной задачи: 1) на основании расчетов режимов сети определяют естественное и экономичное распределение мощностей при номинальных коэффициентах трансформации трансформаторов связи; 2) находят по формуле (6. 28) требуемые принудительные уравнительны мощности в независимых контурах; 13

3) находят по формулам (6. 31) и (6. 32) параметры устройств продольно-поперечного регулирования для каждого независимого контура, при этом установку этих устройств предусматривают в цепях трансформаторов связи; 4) вводят поочередно устройства продольно-поперечного (поперечного) регулирования в каждый контур и определяют экономическую эффективность его установки. При этом для создания продольной ЭДС максимально использую возможности устройств РПН трансформаторов связи. Установка дополнительного устройства экономически целесообразна, если выполняется условие: (6. 40) где 3 Эt - доход, характеризующийся эффектом от снижения потерь электроэнергии в сети в год t; ИУ. П. Р. t, KУ. П. Р. t - годовые издержки и капитальные затраты на дополнительное устройство поперечного 14 регулирования в год t;

5) принимают к установке устройство поперечного регулирования, дающее наибольшее значение (6. 41) 6) расчеты по п. п. 1 -5 с учетом ранее выбранных устройств поперечного регулирования повторяют до тех пор, пока соблюдается условие (6. 40); 7) находят срок окупаемости каждого из дополнительных устройств поперечного регулирования и в зависимости от его численного значения принимают решение о целесообразности применения данного устройства. В связи с тем, что наибольшее снижение потерь мощности может иметь место как в режиме наибольших нагрузок, так и в других режимах энергосистемы, параметры устройств поперечного регулирования приходится выбирать на основе анализа ряда характерных режимов и их продолжительности. 15

6. 5 Оптимизация режимов работы замкнутых сетей с помощью установок продольной компенсации В связи с тем, что в однородных замкнутых сетях естественное распределение мощностей совпадает с экономичным, переход к экономичному режиму возможен путем настройки сети на однородную. Отметим, однако, что такой способ мало пригоден для сложнозамкнутой сети. Он может быть рассмотрен применительно к одному контуру либо к двум параллельным воздушной и кабельной линиям (рисунок 6. 7). Рис. 6. 7 Схемы неоднородных сетей: (а) – замкнутой; (б) – с двумя 16 параллельными линиями

Пусть на участке 123 (рис. 6. 7, а) отношение индуктивного сопротивления к активному больше аналогичного отношения на участке 143: (6. 42) Для создания однородной сети включим в линию 12 устройство продольной компенсации с сопротивлением Хс такой величины, чтобы (6. 43) Отсюда для настройки сети на однородную емкостное сопротивление должно быть равно (6. 44) 17

Целесообразность такого решения проверяется по критерию чистого дисконтированного дохода (6. 40), в котором учитываются годовые издержки и капитальные затраты на устройство продольной компенсации. 18

Проблема оптимизации режимов энергосистем получила полное становле-ние и развитие за последние 30 лет, хотя первые теоретические исследования в этой области были начаты в Советском Союзе значительно раньше. Еще тогда были установлены принципы оптимального распределения активных мощностей между агрегатами на станциях и станциями в системе, базирующиеся на сопоставлении удельных приростов расходов условного топлива. Были установлены критерии оптимального распределения активных мощностей в энергосистемах при учете влияния потерь активной мощности в сетях и при ограничении энергоресурсов.

Уже на этапе, когда была признана необходимость учета потерь активной мощности в сетях при оптимизации режима, стала очевидной невозможность не только оперативной оптимизации, но даже и предварительных расчетов оптимального режима энергосистем без применения вычислительной техники. В связи с этим много внимания уделялось специализированным аналоговым вычислительным устройствам, которые, однако, были вытеснены универсальными цифровыми вычислительными машинами.

В настоящее время для различных задач оптимизации режима накоплен определенный опыт разработки и сопоставления методов, а также практических расчетов в электроэнергетических системах. Наиболее часто решаются задачи оптимизации режима систем по активной мощности и режима электрической сети, т.е. оптимизации по напряжению, реактивной мощности и коэффициентам трансформации (U, Q и Кт), а также более общая задача комплексной оптимизации режима электроэнергетических систем. Эти задачи решаются при оперативном и автоматическом, т.е. в темпе процесса, управлении режимами электроэнергетических систем и сетей.

Накопленный опыт решения задач оптимизации режима на ЭВМ показывает, что для этих задач наиболее эффективно применение метода приведенного градиента при расчете установившегося режима методом Ньютона.

Задачи оптимизации режимов

Оптимальное управление нормальными режимами в энергетической системе заключается в том, чтобы за рассматриваемый отрезок времени обеспечить надежное электроснабжение потребителя электрической энергией требуемого качества (т.е. при соблюдении требуемых ограничений) при минимально возможных эксплуатационных затратах в системе.

Исключительная сложность оптимального управления режимами определяется не только чрезвычайно большим количеством управляемых элементов, но и тем, что разные регулируемые и настраиваемые параметры следует поддерживать в процессе работы системы оптимальными на большой территории.

Оптимизация режима электроэнергетических систем производится всеми инженерами, связанными с расчетами и практической реализацией функционирования электрической системы. Этим занимаются проектировщики, работники служб режимов, диспетчеры энергосистем, оперативный технический персонал электростанций и электросетей.

Задача комплексной оптимизации режима состоит в определении оптимальных значений всех параметров режима при учете технических ограничений. Это задача нелинейного программирования с ограничениями в виде уравнений установившегося режима и нелинейных неравенств. Переменные в задаче этого типа непрерывны.

При комплексной оптимизации режима определяются оптимальные значения активных и реактивных мощностей генерирующих источников, модулей и фаз напряжений в узлах, коэффициентов трансформации при учете технических ограничений на значения модулей узловых напряжений, углов сдвига фаз на дальних передачах, токов и потоков мощности в линиях, Р и Q генераторов и т.д.

Оптимальный режим должен быть допустимым, т.е. удовлетворять условиям надежности электроснабжения и качества электроэнергии, и, кроме того, наиболее экономичным среди допустимых режимов. Условия надежности электроснабжения и качества электроэнергии при расчетах допустимых режимов учитывают ограничения в виде равенств и неравенств на контролируемые параметры режима. Наиболее экономичный режим - это такой из допустимых, при котором обеспечивается минимум суммарного расхода условного топлива (или издержек) при заданной в каждый момент времени нагрузке потребителей, т.е. при заданном полезном отпуске электроэнергии.


aionclassic.ru - Аксессуары. Игры. Новости. Обзоры. Рейтинги. Советы