Устройство для сопряжения эвм с абонентами. Какое бывает устройство для взаимосвязи одной ЭВМ с другими? Устройство для взаимосвязи одной эвм с другими

Многомашинный вычислительный комплекс (ММВК) – комплекс, включающий в себя две или более ЭВМ (каждая из которых имеет процессор, ОЗУ, набор периферийных устройств и работает под управлением собственной операционной системы), связи между которыми обеспечивают выполнение функций, возложенных на комплекс.

Цели, которые ставятся при объединении ЭВМ в комплекс, могут быть различными, и они определяют характер связей между ЭВМ. Чаще всего основной целью создания ММВК является или увеличение производительности, или повышение надежности, или одновременно и то и другое. Однако при достижении одних и тех же целей связи между ЭВМ могут существенно различаться.

По характеру связей между ЭВМ комплексы можно разделить на три типа: косвенно-, или слабосвязанные; прямосвязанные; сателлитные.

В косвенно-, или слабосвязанных, комплексах ЭВМ связаны друг с другом только через внешние запоминающие устройства (ВЗУ). Для обеспечения таких связей используются устройства управления ВЗУ с двумя и более входами. Структурная схема такого ММВК приведена на рис. 1.5. Заметим, что здесь и далее для простоты приводятся схемы для двухмашинных комплексов. При трех и более ЭВМ комплексы строятся аналогичным образом. В косвенно-связанных комплексах связь между ЭВМ осуществляется только на информационном уровне. Обмен информацией осуществляется в основном по принципу «почтового ящика», т. е. каждая из ЭВМ помещает в общую внешнюю память информацию, руководствуясь собственной программой, и соответственно другая ЭВМ принимает эту информацию, исходя из своих потребностей. Такая организация связей обычно используется в тех случаях, когда ставится задача повысить надежность комплекса путем резервирования ЭВМ. В этом случае ЭВМ, являющаяся основной, решает заданные задачи, выдает результаты и постоянно оставляет в общем ВЗУ всю информацию, необходимую для продолжения решения с любого момента времени. Вторая ЭВМ, являющаяся резервной, может находиться в состоянии ожидания, с тем чтобы в случае выхода из строя основной ЭВМ, по сигналу оператора начать выполнение функций, используя информацию, хранимую в общем ВЗУ основной ЭВМ.

Рис. 2.2. Связи между ЭВМ и ММВК

При такой связи может быть несколько способов организации работы комплекса.

1. Резервная ЭВМ находится в выключенном состоянии (ненагруженный резерв) и включается только при отказе основной ЭВМ. Естественно, для того чтобы резервная ЭВМ начала выдавать результаты вместо основной, потребуется определенное время, которое определяется временем, необходимым для включения ЭВМ, вхождением ее и режим, а также временем, отводимым для проверки ее исправности. Это время может быть достаточно большим. Такая организация возможна, когда система, в которой работает ЭВМ, не критична по отношению к некоторым перерывам или остановкам в процессе решения задач. Это обычно имеет место в случаях, когда ЭВМ не выдает управляющую информацию.

2. Резервная ЭВМ находится в состоянии полной готовности и в любой момент может заменить основную ЭВМ (нагруженный резерв), причем либо не решает никаких задач, либо работает в режиме самоконтроля, решая контрольные задачи. В этом случае переход в работе от основной к резервной ЭВМ может осуществляться достаточно быстро, практически без перерыва в выдаче результатов. Однако следует заметить, что основная ЭВМ обновляет в общем ВЗУ информацию, необходимую для продолжения решения, не непрерывно, а с определенной дискретностью, поэтому резервная ЭВМ начинает решать задачи, возвращаясь на некоторое время назад. Такая организация допустима и в тех случаях, когда ЭВМ работает непосредственно в контуре управления, а управляемым процесс достаточно медленным и возврат во времени не оказывает заметного влияния.

При организации работы по первому и второму вариантам ЭВМ используются нерационально: одна ЭВМ всегда простаивает. Простоев можно избежать, загружая ЭВМ решением каких-то вспомогательных задач, не имеющих отношения к основному процессу. Это повышает эффективность системы – производительность практически удваивается.

3. Для того чтобы полностью исключить перерыв в выдаче результатов, обе ЭВМ, и основная и резервная, решают одновременно одни и те же задачи, но результаты выдаст только основная ЭВМ, а в случае выхода се из строя результаты начинает вы давать резервная ЭВМ. При этом общее ВЗУ используется только для взаимного контроля. Иногда такой комплекс дополняется устройством для сравнения результатов с целью контроля. Если при этом используются три ЭВМ, то возможно применение метода голосования, когда окончательный результат выдается только при совпадении результатов решения задачи не менее чем от двух ЭВМ. Это повышает и надежность комплекса в целом, и достоверность выдаваемых результатов. Разумеется, в этом варианте высокая надежность и оперативность достигается весьма высокой ценой – увеличением стоимости системы.

Следует обратить внимание, что при любой организации работы и слабосвязанном ММВК переключение ЭВМ осуществляется либо по командам оператора, либо с помощью дополнительных средств, осуществляющих контроль исправности ЭВМ и вырабатывающих необходимые сигналы. Кроме того, быстрый переход к работе с основной на резервную ЭВМ возможен лишь при низкой эффективности использования оборудования.

Существенно большой гибкостью обладают прямосвязанные ММВК. В прямосвязанных комплексах существуют три вида связей (рис. 1.5): общее ОЗУ (ООЗУ); прямое управление, иначе связь процессор (П) – процессор; адаптер канал – канал (АКК).

Связь через общее ОЗУ гораздо сильнее связи через ВЗУ. Хотя первая связь также носит характер информационной связи и обмен информацией осуществляется по принципу «почтового ящика», однако, вследствие того, что процессоры имеют прямой доступ к ОЗУ, все процессы в системе могут протекать с существенно большей скоростью, а разрывы в выдаче результатов при переходах с основной ЭВМ на резервную сокращаются до минимума. Недостаток связи через общее ОЗУ заключается в том, что при выходе из строя ОЗУ, которое является сложным электронным устройством, нарушается работа всей системы. Чтобы этого избежать, приходится строить общее ОЗУ из нескольких модулей и резервировать информацию. Это, в свою очередь, приводит к усложнению организации вычислительного процесса в комплексе и в конечном счете к усложнению операционных систем. Следует отметить также и то, что связи через общее ОЗУ существенно дороже, чем через ВЗУ.

Непосредственная связь между процессорами – канал прямого управления – может быть не только информационной, но и командной, т. е. по каналу прямого управления один процессор может непосредственно управлять действиями другого процессора. Это, естественно, улучшает динамику перехода от основной ЭВМ к резервной, позволяет осуществлять более полный взаимный контроль ЭВМ. Вместе с тем передача сколько-нибудь значительных объемов информации по каналу прямого управления нецелесообразна, так как в этом случае решение задач прекращается: процессоры ведут обмен информацией.

Связь через адаптер канал – канал в значительной степени устраняет недостатки связи через общее ОЗУ и вместе с тем почти не уменьшает возможностей по обмену информацией между ЭВМ по сравнению с общим ОЗУ. Сущность этого способа связи заключается в том, что связываются между собой каналы двух ЭВМ с помощью специального устройства – адаптера. Обычно это устройство подключается к селекторным каналам ЭВМ. Такое подключение адаптера обеспечивает достаточно быстрый обмен информацией между ЭВМ, при этом обмен может производиться большими массивами информации. В отношении скорости передачи информации связь через АКК мало уступает связи через общее ОЗУ, а в отношении объема передаваемой информации – связи через общее ВЗУ. Функции АКК достаточно просты: это устройство должно обеспечивать взаимную синхронизацию работы двух ЭВМ и буферизацию информации при ее передаче. Хотя функции АКК и его структура (рис. 1.5) достаточно просты, однако большое разнообразие режимов работы двух ЭВМ и необходимость реализации этих режимов существенно усложняет это устройство.

Прямосвязанные комплексы позволяют осуществлять все способы организации ММВК, характерные для слабосвязанных комплексов. Однако за счет некоторого усложнения связей эффективность комплексов может быть значительно повышена. В частности, в прямосвязанных комплексах возможен быстрый переход от основной ЭВМ к резервной и в тех случаях, когда резервная ЭВМ загружена собственными задачами. Это позволяет обеспечивать высокую надежность при высокой производительности.

В реальных комплексах одновременно используется не один вид связи между ЭВМ, а два или более. В том числе очень часто в прямосвязанных комплексах присутствует и косвенная связь через ВЗУ.

Для комплексов с сателлитными ЭВМ характерным является не способ связи, а принципы взаимодействии ЭВМ. Структура связей в сателлитных комплексах не отличается от связей в обычных ММВК: чаще всего связь между ЭВМ осуществляется через АКК. Особенностью же этих комплексов является то, что в них, во-первых, ЭВМ существенно различаются по своим характеристикам, а во-вторых, имеет место определенная соподчиненность машин и различие функций, выполняемых каждой ЭВМ. Одна из ЭВМ, основная, является, как правило, высокопроизводительной и предназначается для основной обработки информации. Вторая, существенно меньшая по производительности, называется сателлитной или вспомогательной ЭВМ. Ее назначение – организация обмена информацией основной ЭВМ с периферийными устройствами, ВЗУ, удаленными абонентами, подключенными через аппаратуру передачи данных к основной ЭВМ. Кроме того, сателлитная ЭВМ может производить предварительную сортировку информации, преобразование ее вформу, удобную для обработки на основной ЭВМ, приведение выходной информации к виду, удобному для пользователя, и др. Сателлитная ЭВМ, таким образом, избавляет основнуювысокопроизводительную ЭВМ от выполнения многочисленных действий, которые не требуют ни большой разрядности, ни сложных операций, т. е. операций, для которых большая, мощная ЭВМ не нужна. Более того, с учетом характера выполняемых сателлитной машиной операций она может быть ориентирована на выполнение именно такого класса операций и обеспечивать даже большую производительность, чем основная ЭВМ.

Некоторые комплексы включают в себя не одну, а несколько сателлитных ЭВМ, при этом каждая из них ориентируется на выполнение определенных функций: например, одна осуществляет связь основной ЭВМ с устройствами ввода–вывода информации, другая – связь с удаленными абонентами, третья организует файловую систему и т. д.

Появление в последнее время дешевых и простых микро-ЭВМ в немалой степени способствует развитию сателлитных комплексов. Сателлитные комплексы решают только одну задачу: увеличивают производительность комплекса, не оказывая заметного влияния на показатели надежности.

Подключение сателлитных ЭВМ принципиально возможно не только через АКК, но и другими способами, однако связь через АКК наиболее удобна.

2.2. Вычислительные сети

Основные принципы построения ЭВМ были сформулированы американским учёным Джоном фон Нейманом в 40-х годах 20 века:

    1. Любую ЭВМ образуют три основные компоненты: процессор, память и устройства ввода-вывода (УВВ).
  • набор команд по обработке (программы);
  • данные подлежащие обработке.

3. И команды, и данные вводятся в память (ОЗУ) – принцип хранимой программы .

4. Руководит обработкой процессор, устройство управления (УУ) которого выбирает команды из ОЗУ и организует их выполнение, а арифметико-логическое устройство (АЛУ) проводит арифметические и логические операции над данными.

5. С процессором и ОЗУ связаны устройства ввода-вывода (УВВ).

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе . Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль).

Шина - это кабель, состоящий из множества проводников. По одной группе проводников - шине данных передаётся обрабатываемая информация, по другой - шине адреса - адреса памяти или внешних устройств, к которым обращается процессор. Третья часть магистрали - шина управления , по ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др).

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шины . Тактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом , передаваемым по адресной шине. Это может быть адрес ячейки памяти или адрес периферийного устройства. Необходимо, чтобы разрядность шины позволила передать адрес ячейки памяти. Таким образом, словами разрядность шины ограничивает объем оперативной памяти ЭВМ, он не может быть больше чем , где n – разрядность шины. Важно, чтобы производительности всех подсоединённых к шине устройств были согласованы. Неразумно иметь быстрый процессор и медленную память или быстрый процессор и память, но медленный винчестер.

Ниже представлена схема устройства компьютера, построенного по магистральному принципу:

В современных ЭВМ реализован принцип открытой архитектуры, позволяющий пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости её модернизацию. Конфигурацией компьютера называют фактический набор компонентов ЭВМ, которые составляют компьютер. Принцип открытой архитектуры позволяет менять состав устройств ЭВМ. К информационной магистрали могут подключаться дополнительные периферийные устройства, одни модели устройств могут заменяться на другие.

Аппаратное подключение периферийного устройства к магистрали на физическом уровне осуществляется через специальный блок - контроллер (другие названия - адаптер, плата, карта). Для установки контроллеров на материнской плате имеются специальные разъёмы - слоты .

Программное управление работой периферийного устройства производится через программу - драйвер , которая является компонентой операционной системы. Так как существует огромное количество разнообразных устройств, которые могут быть установлены в компьютер, то обычно к каждому устройству поставляется драйвер, взаимодействующий непосредственно с этим устройством.

Связь компьютера с внешними устройствами осуществляется через порты – специальные разъёмы на задней панели компьютера. Различают последовательные и параллельные порты. Последовательные (COM – порты) служат для подключения манипуляторов, модема и передают небольшие объёмы информации на большие расстояния. Параллельные (LPT - порты) служат для подключения принтеров, сканеров и передают большие объёмы информации на небольшие расстояния. В последнее время широкое распространение получили последовательные универсальные порты (USB), к которым можно подключать различные устройства.

Минимальная конфигурация компьютера включает в себя: системный блок, монитор, клавиатуру и мышь.

Как называется устройство для взаимосвязи ЭВМ с другими компьютерами? Что ж, если этот вопрос крутится в голове, значит, правильно делаете, что читаете данную статью. Так вот, устройство для взаимосвязи одной ЭВМ с другими - адаптер (иными словами, Что он собой представляет? Как работает? Какие функции он выполняет? На все эти вопросы можно будет найти ответ в рамках данной статьи.

Что такое адаптер

Так называют которое непосредственно работает со средой передачи данных. Благодаря нему, прямо или с использованием иного происходит налаживание связей с другими компьютерами.

Этим устройством решаются задачи обеспечения надежности обмена двоичными данными, что представлены в виде соответствующих электромагнитных сигналов. Их передача осуществляется при использовании внешних линий связи. Поскольку адаптер является контроллером компьютера, то работает он под управлением соответствующего драйвера используемой операционной системы. Разграничение функций между ними может меняться, в зависимости от реализации.

Развитие адаптеров

Итак, мы уже знаем, что устройство для взаимосвязи одной ЭВМ с другими - это адаптер. Теперь давайте кратко проследим, как развивалась данная технология.

В первых локальных сетях адаптеры, вместе с сегментом коаксиального кабеля, брали на себя весь спектр коммуникационного оборудования. Благодаря ним и организовывали взаимодействие компьютеров. Тогда использовалось непосредственное взаимодействие между различными электронно-вычислительными машинами.

Такая технология до сих пор применяется, но большинством современных стандартов предусмотрено ещё и наличие целого ряда специальных коммуникационных устройств (например, мост, коммутатор, концентратор или маршрутизатор). Они перебирают на себя часть функций относительно управления потоком данных.

Ошибочные предположения

Часто можно услышать или прочитать, что устройство для взаимосвязи одной ЭВМ с другими - процессор. Знайте, что это не верно. Устройство для взаимосвязи одной ЭВМ с другими называется адаптером или сетевой картой, но никак иначе! Откуда пошло такое заблуждение, достоверно неизвестно, но если кто-то ошибается, лучше будет поправить его.

Функции оформления и кодирования данных

Функции адаптера заключаются в том, что информацию необходимо передавать в виде кадра, имеющего определённый формат. При этом под кодированием понимают представление информации с помощью определённых сигналов таким образом, чтобы они могли быть приняты на другой стороне, но при этом не должен теряться и заключенный в них смысл.

Давайте более детально остановимся на этом. В кадр включено несколько служебных полей. К ним относится адрес компьютера, которому необходимо передать данные и каждого кадра. По ней будет делаться вывод о корректности предоставленной информации. Про кодирование можно сказать, что его смысл заключается в преодолении помехи и предоставлении принимающей аппаратуре возможности распознавания полученных данных.

Также есть некоторые технические нюансы. Так, при использовании в локальной сети широкополосных кабелей адаптерами не используется модуляция сигнала. Поскольку это необходимо, только когда передача идёт по узкополосным линиям связи (в качестве таковых могут приводиться телефонные каналы тональной частоты).

Функция получения доступа

Следующая функция используется при взаимодействии со средой трансляции данных. Применяется в тех случаях, когда необходимо получить доступ по определённому алгоритму.

Это необходимо из-за эксплуатации разделяемой среды трансляции данных. Но наметилась тенденция на отказ от такого подхода в пользу индивидуальных каналов связи ЭВМ с коммуникационными устройствами сети (подобно тому, что делается в проводной телефонии).

Функция преобразования и синхронизации

Преобразование и синхронизация необходимы для предоставления данных в читаемом виде. Так, благодаря адаптеру, информация может быть преобразована из последовательной формы в параллельную и наоборот. Это необходимо из-за того, что для упрощения выполнения задачи синхронизации (а также для удешевления линий связи) данные передаются постепенно - один бит за другим. Для сравнения - в компьютере информация перемещается побайтно.

Относительно синхронизации можно сказать, что она необходима, чтобы поддерживать постоянное бесконфликтное взаимодействие приемника и передатчика данных. Эта задача адаптером успешно решается, благодаря специальным методам кодирования, где не используется дополнительная шина с тактовыми синхросигналами.

Благодаря такому методу запросто обеспечивается периодическое изменения состояния сигнала, что передаётся. Кроме проблем с синхронизацией на уровне битов, адаптером решаются аналогичные задачи и относительной байтов и кадров.

Технические особенности

Различают адаптеры по внутренней шине данных и по используемой технологии. Так, если говорить о первом случае, то здесь могут быть следующие типы:

  • EISA;

С сетевыми технологиями не всё так однозначно. Обычно один адаптер поддерживает работу по одной из них. Но, несмотря на это, информация без проблем передается. Это достигается благодаря тому, что используются разные среды трансляции данных. Для примера, одна из самых популярных технологий - Ethernet - может спокойно поддерживать коаксиальный и оптоволоконный кабели или неэкранированную витую пару.

Если адаптером может поддерживаться только одна среда, то используют конверторы и трансиверы. Что собой представляют эти устройства?

Трансиверы и конверторы

Трансиверы также называют приемопередатчиками. Они являются частью сетевого адаптера и представляют собой его оконечное устройство, которое выходит на кабель. Хотя, следует отметить, что первоначально они были расположены на кабелях (если рассматривать первый стандарт Ethernet), но потом было принято решение, что более удобным является размещение именно на адаптере.

Вместо трансивера можно применять конвертор. Он занимается согласованием информации при использовании различных сред трансляции данных. Как пример можно привести локальную домашнюю сеть, где используется витая пара с коаксиальным кабелем.

Заключение

Что ж, задача выполнена - терминология и особенности адаптеров разъяснены. Теперь не должно быть вопросов о том, как называется устройство для взаимосвязи одной ЭВМ с другими компьютерами. Кроме этого, мы рассмотрели, какие функции выполняются адаптерами, какой путь развития они прошли, а также как могут быть улучшены без кардинальных изменений. Для углубленного изучения темы предоставленной информации недостаточно, но как начало изучения построения физической передачи данных, она будет вам полезна.

Если вас интересует, как называется устройство, предназначенное для взаимосвязи ЭВМ с другими компьютерами, то эта статья определенно вам поможет. Устройство для взаимосвязи одной ЭВМ с другими называется адаптером или сетевой картой. Что собой представляет данный элемент? Как он работает? Какие функции выполняет сетевая карта? В рамках данной статьи вы получите ответ на эти и многие другие вопросы.

Адаптер: что это такое?

Адаптером называют периферийное устройство компьютера, которое работает непосредственно со средой передачи данных. Именно благодаря адаптеру или при использовании другого коммуникационного оборудования осуществляется налаживание связей с другими ПК. Данное устройство решает задачи обеспечения надежности обмена двоичными данными, которые представлены в виде соответствующих ЭМ сигналов. Передача этих данных осуществляется при использовании внешних линий связи. Так как адаптер является контроллером компьютера, он работает под управлением соответствующих драйверов операционной системы. В зависимости от реализации разграничение функций между ними может меняться.

Развитие адаптеров

Вы уже знаете, что устройство для связи одной ЭВМ с другими называется адаптером. Рассмотрим, как же развивалась данная технология. Адаптеры в первых локальных сетях вместе с сегментом коаксиального кабеля брали на себя весь спектр коммуникационного оборудования. Именно благодаря им и реализовывалось взаимодействие между компьютерами. Тогда использовалось непосредственное взаимодействие между различными ЭВМ. Такая технология до сих пор используется. Однако в большинстве современных стандартов предусмотрено еще наличие целого ряда специальных коммуникационных устройств, таких как коммутатор, мост, концентратор и маршрутизатор. Эти устройства забирают на себя часть функций, связанных с управлением потоком данных.

Ошибочные предположения

Довольно часто можно услышать или прочитать о том, что устройством для связи одной ЭВМ с другими является процессор. Это утверждение является не верным. Устройство для связи одной электронно-вычислительной машины с другой называется сетевой картой или адаптером, и никак иначе. Достоверно неизвестно, откуда пошло такое заблуждение.

Функция оформления и кодирования данных

Функции адаптера состоят в том, что информацию необходимо передавать в виде кадра, который имеет определенный формат. Под кодированием при этом понимают представление информации при помощи определенных сигналов таким образом, чтобы они могли быть приняты на другой стороны. При этом заключенный в них смысл не должен теряться. Давайте остановимся на данном вопросе более детально. В кадре имеется несколько служебных полей. К таким полям относится адрес ПК, которому необходимо передать данные, и контрольная сумма каждого кадра. По контрольной сумме и будет делаться вывод о корректности предоставленной информации. Про кодирование можно сказать, что смысл данной процедуры заключается в преодолении помехи и предоставлении принимающей аппаратуре возможности распознавания полученной информации. Имеются также и некоторые техническое особенности. Так, например, при использовании в локальной сети широкополосных кабелей адаптерами не используется модуляция сигнала, так как это необходимо только тех случаях, когда передача идет по узкополосным линиям связи. В качестве таковых могут выступать телефонные каналы тональной частоты.

Функция получения доступа

Следующая функция применяется только во взаимодействии со средой трансляции данных. Она используется только в тех случаях, когда требуется получить доступ по определенному алгоритму. Это необходимо из-за эксплуатации разделяемой среды трансляции данных. Однако сегодня наметилась определенная тенденция отказа от такого подхода в пользу индивидуальных каналов связи ЭВМ с коммуникационными устройствами сети. Подобный принцип используется в проводной телефонии.

Функция синхронизации и преобразования

Для предоставления информации в читаемом виде необходимы преобразование и синхронизация. Благодаря адаптеру, информация может быть преобразована из последовательной формы в параллельную, и наоборот. Это необходимо сделать по той простой причине, что для упрощения выполнения задачи синхронизации данные передаются постепенно, бит за битом. В компьютере вся информация перемещается побайтно. Что же касается синхронизации, то можно сказать, что она необходима для того, чтобы поддерживать бесконфликтное взаимодействие между приемником и передатчиком информации. Данная задача успешно решается адаптером благодаря использованию специальных методов кодирования, где не используется дополнительная шина с тактовыми синхросигналами. Благодаря использованию такого метода можно легко обеспечить периодическое изменение состояния передаваемого сигнала. Помимо проблем с синхронизацией на уровне битов, адаптер также решает и аналогичные задачи относительно кадров и байтов.

Технические особенности

Адаптеры различают по используемой технологии и внутренней шине данных. Если говорить о шине, то здесь встречаются следующие типы: EISA, ISA, MCA, PCI. С сетевыми технологиями все довольно неоднозначно. Обычно один адаптер поддерживает работу только по одной сетевой технологии. Достигается это благодаря использованию различных сред трансляции данных. Одной из наиболее популярных технологий является Ethernet. Она спокойно поддерживает коаксиальный, оптоволоконный кабели и неэкранированную витую пару. Если адаптер может поддерживать только одну среду, то тогда могут использоваться трансиверы и конверторы. Что собой представляют данные устройства?

Конверторы и трансиверы

Трансиверы по-другому называют приемопередатчиками. Они представляют собой часть сетевого адаптера и являются оконечными устройствами, которые выходят на кабель. Следует отметить, что первоначально трансиверы располагались на кабелях. Потом было принято решение, что наиболее удобным является размещение именно на адаптере. Вместо трансивера можно было использовать конвертор. Он используется для согласования информации при использовании различных сред трансляции данных. В качестве примера можно привести локальную домашнюю сеть, в которой используется коаксиальный кабель и витая пара.

Заключение

Задачу можно считать выполненной. Основная терминология и конструкционные особенности адаптеров разъяснены. Теперь у вас не должно возникать вопросов о названии устройства, используемого для взаимосвязи одного ПК с другими. Кроме того, в данной статье мы рассмотрели, какие функции выполняются адаптерами, какой путь развития они прошли и как они могут быть улучшены. Предоставленной информации недостаточно для более глубокого изучения данного вопроса, но для начального изучения вопросов, связанных с построением физической передачи данных, она вполне подойдет.


Исторически компьютер появился как машина для вычислений и назывался электронной вычислительной машиной - ЭВМ. Структура такого устройства была описана знаменитым математиком Джоном фон Нейманом в 1945 г

Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов.

Структура современного персонального компьютера представлена на рисунке ниже.

Рассмотрим принцип взаимодействия основных устройств.

Материнская (системная) плата - важнейший элемент ПК. На ней размещаются устройства, непосредственно осуществляющие процесс обработки информации (вычислений). Как правило, это микропроцессор, внутренняя память, системная шина, контроллер клавиатуры, генератор тактовой частоты, контроллер прерываний, таймер и др. Схемы, управляющие другими внешними устройствами компьютера, как правило, находятся на отдельных платах, вставляемых в унифицированные разъемы (слоты) на материнской плате. Через эти разъемы контроллеры устройств подключаются непосредственно к системной магистрали передачи данных в компьютере - шине. Иногда эти контроллеры могут располагаться на системной плате. Наборы микросхем, на основе которых исполняются системные платы, называют чипсетами. Материнские платы различаются по типу процессоров, которые могут быть установлены на них, и названия фирм, их выпускающих. На материнских платах находятся специальные перемычки - джамперы, позволяющие подстроить ее под тип процессора и других устройств, устанавливаемых на ней.

Все дополнительные устройства взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных - шину. Виды слотов расширения различаются по типу шины. Данные могут передаваться между внешними устройствами и процессором, оперативной памятью и процессором, внешними устройствами и оперативной памятью или между устройствами ввода-вывода. Шина характеризуется типом, разрядностью, частотой и количеством подключаемых внешних устройств. При работе с оперативной памятью шина проводит поиск нужного участка памяти и обменивается информацией с найденным участком. Эти задачи выполняют две части системной шины: адресная шина и шина данных.

Аппаратно-логические устройства, отвечающие за совместное функционирование различных компонентов, называют интерфейсами. Современный компьютер заполнен разными интерфейсами, обеспечивающими всеобщее взаимодействие. На интерфейсы существуют стандарты.

Совокупность интерфейсов, реализованных в компьютере, образует то, что называют архитектурой компьютера.

Для добавления в ПК нового дополнительного устройства необходим контроллер - устройство, аппаратно согласовывающее работу системы и дополнительного устройства. Кроме того, необходим драйвер этого устройства - программа, позволяющая программно связать это устройство с системой в целом.

Контроллер должен учитывать аппаратные особенности подключаемого устройства, а драйвер должен позволить операционной системе, используя стандартный набор командных запросов, управлять нестандартным устройством.

Драйвер выступает в роли "переводчика" с языка операционной системы на язык конкретного устройства, контроллер выступает в роли аппаратного "мостика" между системой в целом и дополнительным устройством.

Центральной частью компьютера является системный блок, с присоединенными к нему клавиатурой, монитором и мышью. Системный блок и монитор независимо друг от друга подключаются к источнику питания - сети переменного тока. В современных компьютерах дисплей и системный блок иногда монтируются в едином корпусе.

В системном блоке располагаются все основные устройства компьютера:

микропроцессор - мозг компьютера, который выполняет поступающие на его вход команды: проводит вычисления и управляет работой остальных устройств ПК;

оперативная память, предназначенная для временного хранения программ и данных;

контроллеры, предназначенные для независимого от процессора управления отдельными процессами в работе ПК;

накопители на гибких магнитных дисках, используемые для чтения и записи на дискеты;

накопитель на жестком магнитном диске, предназначенный для чтения и записи на жесткий магнитный диск (винчестер);

дисководы для компакт-дисков, обеспечивающие возможность чтения данных с компьютерных компакт-дисков и проигрывания аудиокомпакт-дисков, а также запись информации на компакт-диск;

блок питания, преобразующий электропитание сети в постоянный ток, подаваемый на электронные схемы компьютера;

счетчик времени, который функционирует независимо от того, включен компьютер или нет;

другие устройства.

Все компоненты ПК по их функциональному отношению к работе с информацией можно условно разделить на:

устройства обработки информации (центральный процессор, специализированные процессоры);

устройства хранения информации (жесткий диск, CD-ROM, оперативная память, др.);

устройства ввода информации (клавиатура, мышь, микрофон, сканер и т.д.);

устройства вывода информации (монитор, принтер, акустическая система и т.д.).

Микропроцессор (МП), или центральный процессор {CPU, от англ. Central Processing Unit) - основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.

Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина. Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему - контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Память (внутренняя - системная, включающая ОЗУ и ПЗУ и внешняя дисковая). ПЗУ (от англ. ROM, Read Only Memory - память только для чтения) служит для хранения неизменяемой (постоянной) программной и справочной информации. ОЗУ (от англ. RAM, Random Access Memory - память с произвольным доступом) предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Дисковая память относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач, в ней, в частности, хранится все программное обеспечение компьютера. В качестве устройств внешней памяти размещаемых в системном блоке, используются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках, накопители на оптических дисках (НОД) и др;

Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания - аккумулятору и при отключении машины от сети продолжает работать.

Внешние устройства (ВУ). Это важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что по стоимости ВУ иногда составляют 50 - 80% всего ПК, От состава и характеристик ВУ во многом зависят возможность и эффективность применения ПК в системах управления и в народном хозяйстве в целом.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков. Так, по назначению можно выделить следующие виды ВУ:

внешние запоминающие устройства (ВЗУ) или внешняя память ПК;

устройства ввода информации;

устройства вывода информации;

средства связи и телекоммуникации.

Монитор - устройство для отображения вводимой и выводимой из ПК информации.

Устройства речевого ввода-вывода относятся к быстроразвивающимся средствам мультимедиа. Устройства речевого ввода - это различные микрофонные акустические системы, "звуковые мыши", например, со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и закодировать.

Устройства речевого вывода - это различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.

К устройствам ввода информации относятся:

клавиатура - устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;

графические планшеты (диджитайзеры) - для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК;

сканеры (читающие автоматы) - для автоматического считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей; в устройстве кодирования сканера в текстовом режиме считанные символы после сравнения с эталонными контурами специальными программами преобразуются в коды ASCII, а в графическом режиме считанные графики и чертежи преобразуются в последовательности двухмерных координат;

манипуляторы (устройства указания): джойстик - рычаг, мышь, трекбол - шар в оправе, световое перо и др. - для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК;

сенсорные экраны - для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК.

К устройствам вывода информации относятся:

принтеры - печатающие устройства для регистрации информации на бумажный носитель;

графопостроители (плоттеры) - для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель; плоттеры бывают векторные с вычерчиванием изображения с помощью пера и растровые: термографические, электростатические, струйные и лазерные.

Устройства связи и телекоммуникации используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифро-аналоговые и аналого-цифровые преобразователи и т.п.) и для подключения ПК к каналам связи, к другим ЭВМ и вычислительным сетям (сетевые интерфейсные платы, "стыки", мультиплексоры передачи данных, модемы).

Дополнительные схемы. К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления некоторых трансцендентных, в том числе тригонометрических, функций. Математический сопроцессор имеет свою систему команд и работает параллельно (совмещено во времени) с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз.

Сопроцессор ввода-вывода за счет параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (монитор, принтер, НЖМД, НГМД и др.); освобождает МП от обработки процедур ввода-вывода, в том числе реализует и режим прямого доступа к памяти.

Важнейшую роль играет в ПК контроллер прерываний.

Прерывание - временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной) программы.

Прерывания возникают при работе компьютера постоянно. Достаточно сказать, что все процедуры ввода-вывода информации выполняются по прерываниям. Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. МП, получив этот сигнал, приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.