Системы хранения данных (СХД). Системы хранения данных компании Intel Сеть хранения данных san дисковый массив

Как известно, в последнее время наблюдается интенсивное увеличение объемов накапливаемой информации и данных. Исследование, проведенное IDC «Цифровая вселенная», продемонстрировало, что мировой объем цифровой информации к 2020 г. способен увеличиться с 4,4 зеттебайт до 44 зеттебайт. По словам экспертов, каждые два года объем цифровой информации удваивается. Поэтому сегодня чрезвычайно актуальной является проблема не только обработки информации, но также и ее хранения.

Для решения данного вопроса в настоящее время наблюдается весьма активное развитие такого направления, как развитие СХД (сетей/систем хранения данных). Попробуем разобраться, что именно современная ИТ-индустрия подразумевает под понятием «система хранения данных».

СХД – это программно-аппаратное комплексное решение, направленное на организацию надежного и качественного хранения различных информационных ресурсов, а также предоставления бесперебойного доступа к этим ресурсам.

Создание подобного комплекса должно помочь в решении самых разных задач, встающих перед современным бизнесом в ходе построения цельной информационной системы.

Основные компоненты СХД :

Устройства хранения (ленточная библиотека, внутренний либо внешний дисковый массив);

Система мониторинга и управления;

Подсистема резервного копирования/ архивирования данных;

Программное обеспечение управления хранением;

Инфраструктура доступа ко всем устройствам хранения.

Основные задачи

Рассмотрим наиболее типичные задачи:

Децентрализация информации. Некоторые организации обладают развитой филиальной структурой. Каждое отдельное подразделение такой организации должно обладать свободным доступом ко всей информации, необходимой ему для работы. Современные СХД взаимодействуют с пользователями, которые находится на большом расстоянии от центра, где выполняется обработка данных, поэтому способны решить эту задачу.

Невозможность предусмотреть конечные требуемые ресурсы. Во время планирования проекта определить, с каким именно объемами информации придется работать во время эксплуатации системы, бывает крайне сложно. Кроме этого, постоянно увеличивается масса накапливаемых данных. Большинство современных СХД обладает поддержкой масштабируемости (способности наращивать свою производительность после добавления ресурсов), поэтому мощность системы можно будет увеличивать пропорционально возрастанию нагрузок (производить апгрейд).

Безопасность всей хранимой информации. Проконтролировать, а также ограничить доступ к информационным ресурсам предприятия бывает довольно сложно. Неквалифицированные действия обслуживающего персонала и пользователей, умышленные попытки вредительства – все это способно нанести хранящимся данным значительный вред. Современные СХД используют различные схемы отказоустойчивости, позволяющие противостоять как умышленным диверсиям, так и неумелым действиям неквалифицированных сотрудников, сохранив тем самым работоспособность системы.

Сложность управления распределенными информационными потоками – любое действие, направленное на изменение распределенных информационных данных в одном из филиалов, неизбежно создает ряд проблем – от сложности синхронизации разных баз данных и версий файлов разработчиков до ненужного дублирования информации. Программные продукты управления, поставляемые вместе с СХД , помогут вам оптимально упростить и эффективно оптимизировать работу с хранимой информацией.

Высокие расходы. Как показали результаты проведенного IDC Perspectives исследования, расходы на хранение данных составляют порядка двадцати трех процентов от всех расходов на IT. Эти расходы включают стоимость программной и аппаратной частей комплекса, выплаты обслуживающему персоналу и пр. Использование СХД позволяет сэкономить на администрировании системы, а также обеспечивает снижение расходов на персонал.


Основные типы СХД

Все системы хранения данных подразделяются на 2 типа: ленточные и дисковые СХД . Каждый из двух вышеупомянутых видов делится, в свою очередь, на несколько подвидов.

Дисковые СХД

Такие системы хранения данных используются для создания резервных промежуточных копий, а также оперативной работы с различными данными.

Дисковые СХД подразделяются на следующие подвиды:

Устройства для резервных копий (различные дисковые библиотеки);

Устройства для рабочих данных (оборудование, характеризующееся высокой производительностью);

Устройства, используемые для длительного хранения архивов.


Ленточные СХД

Используются для создания архивов, а также резервных копий.

Ленточные СХД подразделяются на следующие подвиды:

Ленточные библиотеки (два либо более накопителей, большое количество слотов для лент);

Автозагрузчики (1 накопитель, несколько слотов, предназначенных для лент);

Отдельные накопители.

Основные интерфейсы подключения

Выше мы рассмотрели основные типы систем, а теперь давайте разберемся подробнее со структурой самих СХД . Современные системы хранения данных подразделяются в соответствии с типом используемых ими интерфейсов подключения хостов. Рассмотрим ниже 2 наиболее распространенных внешних интерфейса подключения - SCSI и FibreChannel. Интерфейс SCSI напоминает широко распространенный IDE и представляет собой параллельный интерфейс, который допускает размещение на одной шине от шестнадцати устройств (для IDE, как известно, два устройства на канал). Максимальная скорость SCSI протокола сегодня составляет 320 мегабайт в секунду (версия, которая будет обеспечивать скорость в 640 мегабайт в секунду, сегодня находится в разработке). Недостатки SCSI следующие – неудобные, не обладающие помехозащищенностью, слишком толстые кабели, максимальная длина которых не превышает двадцати пяти метров. Сам протокол SCSI тоже накладывает определенные ограничения – как правило, это 1 инициатор на шине плюс ведомые устройства (стримеры, диски и пр.).

Интерфейс FibreChannel используется реже, чем интерфейс SCSI, так как оборудование, используемое для данного интерфейса, стоит дороже. Кроме этого, FibreChannel используется для развертывания крупных SAN сетей хранения данных, поэтому используется он только в крупных компаниях. Расстояния могут быть, практически, любыми – от стандартных трехсот метров на типовом оборудовании до двух тысяч километров для мощных коммутаторов («директоров»). Основным преимуществом интерфейса FibreChannel является возможность объединить многие устройства хранения и хосты (сервера) в общую SAN сеть хранения данных. Менее важными преимуществами являются: большие, чем со SCSI, расстояния, возможность агрегирования каналов и резервирования путей доступа, возможность «горячего подключения» оборудования, более высокая помехозащищенность. Используются двухжильные одно- и многомодовые оптические кабели (с коннекторами типа SC либо LC), а также SFP – оптические трансмиттеры, изготавливаемые на основе лазерных либо светодиодных излучателей (от этих компонентов зависит максимальное расстояние между используемыми устройствами, а также скорость передачи).

Варианты топологий СХД

Традиционно СХД используется для подключения серверов к DAS – системе хранения данных. Кроме DAS существуют еще и NAS – устройства хранения данных, которые подключаются к сети, а также SAN – составляющие сетей хранения данных. SAN и NAS системы были созданы как альтернатива архитектуре DAS. При этом каждое из вышеупомянутых решений разрабатывалось в качестве ответа на постоянно увеличивающиеся требования к современным системам хранения данных и основывалось на применении доступных на тот момент технологий.

Архитектуры первых сетевых систем хранения разработаны были в 1990-х годах для устранения наиболее ощутимых недостатков DAS систем. Сетевые решения в сфере систем хранения были предназначены для реализации вышеперечисленных задач: снижения затрат и сложности управления данными, уменьшения трафика локальных сетей, повышения общей производительности и степени готовности данных. При этом архитектуры SAN и NAS решают разные аспекты одной общей проблемы. В результате одновременно стали существовать 2 сетевые архитектуры. Каждая из них обладает собственными функциональными возможностями и преимуществами.

DAS


(D irect A ttached S torage) – это архитектурное решение, используемое в случаях, когда устройство, применяемое для хранения цифровых данных, подключено по протоколу SAS через интерфейс непосредственно к серверу либо к рабочей станции.


Основные преимущества DAS систем: невысокая, сравнительно с остальными решениями СХД, стоимость, простота развертывания, а также администрирования, высокоскоростной обмен данными между сервером и системой хранения.

Вышеперечисленные преимущества позволили DAS системам стать чрезвычайно популярными в сегменте небольших корпоративных сетей, хостинг-провайдеров и малых офисов. Но при этом у DAS-систем имеются и свои недостатки, например, не оптимальная утилизация ресурсов, объясняемая тем, что для каждой DAS-системы требуется подключение выделенного сервера, кроме этого, каждая такая система позволяет подключить к дисковой полке не больше двух серверов в определенной конфигурации.

Преимущества:

Доступная стоимость. СХД представляет собой по сути установленную за пределами сервера дисковую корзину, снабженную жесткими дисками.

Обеспечение высокоскоростного обмена между сервером и дисковым массивом.


Недостатки:

Недостаточная надежность – в случае аварии либо возникновения в сети каких-либо проблем сервера перестают быть доступными ряду пользователей.

Высокая латентность, возникающая из-за того, что все запросы обрабатываются одним сервером.

Низкая управляемость – доступность всей емкости одному серверу уменьшает гибкость распределения данных.

Низкая утилизация ресурсов – требуемые объемы данных предсказать сложно: одни устройства DAS в организации могут испытывать избыток емкости, а другим может ее не хватать, поскольку перераспределение емкости обычно бывает слишком трудоемким либо вовсе невозможным.

NAS


(N etwork A ttached S torage) – это интегрированная отдельно стоящая дисковая система, включающая в себя NAS сервер с собственной специализированной операционной системой и набором полезных для пользователей функций, обеспечивающих быстрый запуск системы, а также доступ к любым файлам. Подключается система к обыкновенной компьютерной сети, позволяя пользователям данной сети решить проблему недостатка свободного дискового пространства.

NAS - хранилище, которое подключается к сети как обычное сетевое устройство, обеспечивая файловый доступ к цифровым данным. Любое устройство NAS представляет собой комбинацию системы хранения данных и сервера, к которому подключена эта система. Простейшим вариантом NAS устройства является сетевой сервер, который предоставляет файловые ресурсы.

Состоят NAS устройства из головного устройства, которое выполняет обработку данных, а также соединяет цепочку дисков в единую сеть. NAS обеспечивают использование систем хранения данных в сетях Ethernet. Совместный доступ к файлам организуется в них при помощи протокола TCP/IP. Подобные устройства обеспечивают совместное использование файлов даже теми клиентами, системы которых функционируют под управлением разных операционных систем. В отличие от DAS архитектуры, в NAS системах сервера для повышения общей емкости в автономный режим можно не переводить; добавлять диски в структуру NAS можно посредством простого подключения устройства в сеть.

NAS технология развивается сегодня в качестве альтернативы универсальным серверам, несущим в себе большое количество различных функций (электронная почта, факс сервер, приложения, печать и пр.). NAS-устройства, в отличие от универсальных серверов, выполняют всего одну функцию – файлового сервера, стараясь делать это максимально быстро, просто и качественно.

Подключение NAS к ЛВС обеспечивает доступ к цифровой информации неограниченному числу гетерогенных клиентов (то есть клиентов с разными операционными системами) либо другим серверам. Сегодня практически все устройства NAS используются в сетях Ethernet на основе TCP/IP протоколов. Доступ к NAS устройствам осуществляется посредством использования специальных протоколов доступа. Самые распространенные протоколы файлового доступа – DAFS, NFS, CIFS. Внутри таких серверов устанавливаются специализированные операционные системы.

NAS-устройство может выглядеть как обычная «коробочка», снабженная одним портом Ethernet, а также парой жестких дисков, а может представлять собой огромную систему, снабженную несколькими специализированными серверами, огромным количеством дисков, а также внешних Ethernet-портов. Иногда устройства NAS представляют собой часть SAN-сети. В этом случае они собственных накопителей не имеют, а лишь предоставляют доступ к тем данным, которые располагаются на блочных устройствах. В данном случае NAS выступает как мощный специализированный сервер, а SAN – как устройство хранения данных. Из SAN и NAS компонентов в данном случае формируется единая DAS топология.

Преимущества

Невысокая стоимость, доступность ресурсов для отдельных серверов, а также для любого компьютера организации.

Универсальность (один сервер способен обслуживать клиентов Unix, Novell, MS, Mac).

Простота развертывания, а также администрирования.

Простота совместного использования ресурсов.


Недостатки

Доступ к информации посредством протоколов сетевых файловых систем часто бывает более медленным, чем доступ к локальному диску.

Большая часть доступных по цене NAS-серверов не в состоянии обеспечивать гибкий, скоростной метод доступа, который обеспечивается современными SAN системами (на уровне блоков, а не файлов).

SAN


(S torage A rea N etwork) - это архитектурное решение позволяет подключать к серверам внешние устройства хранения данных (ленточные библиотеки, дисковые массивы, оптические накопители и пр.). При таком подключении внешние устройства распознаются операционной системой как локальные. Использование SAN сети позволяет снизить совокупную стоимость содержания системы хранения данных и позволяет современным организациям организовать надежное хранение своей информации.

Простейший вариант SAN – это СХД , сервера и коммутаторы, объединенные оптическими каналами связи. Кроме дисковых систем хранения данных, в SAN могут быть подключены дисковые библиотеки, стримеры (ленточные библиотеки), устройства, используемые для хранения информации на оптических дисках и пр.

Преимущества

Надежностью доступа к тем данным, которые находятся на внешних системах.

Независимость SAN топологии от используемых серверов и систем хранения данных.

Безопасность и надежность централизованного хранения данных.

Удобство централизованного управления данными и коммутацией.

Возможность перенести в отдельную сеть трафика ввода-вывода, обеспечивающая разгрузку LAN.

Низкая латентность и высокое быстродействие.

Гибкость и масштабируемость логической структуры SAN.

Фактическая неограниченность географических размеров SAN.

Возможность оперативного распределения ресурсов между серверами.

Простота схемы резервного копирования, обеспечиваемая тем, что все данные располагаются в одном месте.

Возможность создания отказоустойчивых кластерных решений на основе имеющейся SAN без дополнительных затрат.

Наличие дополнительных сервисов и возможностей, таких как удаленная репликация, снапшоты и пр.

Высокий уровень безопасности SAN/


Единственным недостатком подобных решений является их высокая стоимость. В целом, отечественный рынок систем хранения данных отстает от рынка развитых западных государств, для которого характерно широкое использование СХД . Высокая стоимость и дефицит скоростных каналов связи – главные причины, тормозящие развитие российского рынка СХД .

RAID

Говоря о системах хранения данных, обязательно следует рассмотреть и одну и главных технологий, лежащих в основе работы таких систем и повсеместно используемых в современной IT-индустрии. Мы имеем в виду RAID-массивы.

RAID-массив состоит из нескольких дисков, которые управляются контроллером и связаны между собой посредством скоростных каналов передачи данных. Внешней системой такие диски (запоминающие устройства) воспринимаются в качестве единого целого. Тип используемого массива непосредственным образом влияет на степень быстродействия и отказоустойчивости. RAID-массивы используются для увеличения надежности хранения данных, а также для повышения скорости записи/чтения.

Существует несколько уровней RAID, используемых при создании сетей хранения данных. Чаще всего используются следующие уровни:

1. Это дисковый массив увеличенной производительности, без отказоустойчивости, с чередованием.
Информация разбивается на отдельные блоки данных. Записывается она одновременно на два либо несколько дисков.

Плюсы:

Суммируется объем памяти.

Значительное увеличение производительности (количество дисков непосредственно влияет на кратность повышения производительности).


Минусы:

Надежность RAID 0 ниже надежности даже самого ненадежного диска, поскольку в случае отказа любого из дисков, весь массив становится неработоспособным.


2. – дисковый зеркальный массив. Этот массив состоит из пары дисков, полностью копирующих друг друга.

Плюсы:

Обеспечение при распараллеливании запросов приемлемой скорости записи, а также выигрыша по скорости чтения.

Обеспечение высокой надежности – дисковый массив такого типа функционирует до того времени, пока в нем работает хотя бы 1 диск. Вероятность поломки одновременно 2-х дисков, равная произведению вероятностей поломки каждого из них, намного ниже, чем вероятность поломки одного диска. При поломке одного диска на практике необходимо немедленно принимать меры, вновь восстанавливая избыточность. Для этого рекомендуется с RAID любого уровня (за исключением нулевого) применять диски горячего резерва.


Минусы:

Недостаток RAID 1 состоит только в том, что пользователь получает один жесткий диск по цене двух дисков.



3. . Это построенный из RAID 1 массивов массив RAID 0.

4. RAID 2 . Используется для массивов, применяющих код Хемминга.

Массивы данного типа основываются на применении кода Хемминга. Диски подразделяются на 2 группы: для данных, а также для кодов, используемых для коррекции ошибок. Данные по дискам, используемым для хранения информации, распределяются аналогично распределению в RAID 0, то есть они разбиваются на блоки небольшого размера в соответствии с количеством дисков. На оставшихся дисках хранятся все коды коррекции ошибок, которые помогают восстановить информацию в случае, если один из жестких дисков выйдет из строя. Метод Хемминга, используемый в ЕСС памяти, дает возможность исправлять на лету однократные ошибки, а также обнаруживать двукратные.

RAID 3 , RAID 4 . Это массивы дисковые с чередованием, а также выделенным диском четности. В RAID 3 данные из n дисков разбиваются на составляющие размером меньше сектора (на блоки либо байты), после чего распределяются по дискам n-1. На одном диске хранятся блоки четности. В массиве RAID 2 для данной цели использовался n-1 диск, однако большинство информации на контрольных дисках использовалось для коррекции на лету ошибок, тогда как большинству пользователей при поломке диска достаточно простого восстановления информации (для этого бывает достаточно информации, которая помещается на одном жестком диске).

Массив RAID 4 напоминает RAID 3, однако, данные на нем разбиваются не на отдельные байты, а на блоки. Это отчасти позволило решить проблему недостаточно высокой скорости передачи данных, имеющих небольшой объем. Запись при этом осуществляется чересчур медленно из-за того, что при записи генерируется четность для блока, записываясь на единственный диск.
От RAID 2 RAID 3 отличается невозможностью скорректировать ошибки на лету, а также меньшей избыточностью.

Плюсы:

Облачные провайдеры тоже осуществляют активные закупки для своих нужд систем хранения данных, к примеру, Facebook и Google строят из готовых компонентов по индивидуальному заказу собственные серверы, но эти серверы в отчете IDC не учитываются.

Также в компании IDC ожидают, что вскоре развивающиеся рынки в отношении потребления СХД существенно обгонят рынки развитые, поскольку им свойственны более высокие темпы экономического роста. К примеру, регион Восточной и Центральной Европы, Африки и Ближнего Востока в 2014 г. по расходам на системы хранения данных превзойдет Японию. К 2015 г. Азиатско-Тихоокеанский регион, исключая Японию, по объему потребления систем хранения данных превзойдет Западную Европу.

Выполняемая нашей компанией «Навигатор» продажа систем хранения данных дает возможность каждому желающему получить надежную и долговечную основу для хранения своих мультимедийных данных. Широкий выбор Raid массивов, сетевых хранилищ и прочих систем дает возможность в индивидуальном порядке подобрать для каждого заказа RAID со второго по четвертый является невозможность осуществления параллельных операций записи, объясняемая тем, что для хранения цифровой информации о четности применяется отдельный контрольный диск. У RAID 5 вышеупомянутый недостаток отсутствует. Запись контрольных сумм и блоков данных осуществляется автоматически на все диски, асимметричность конфигурации дисков отсутствует. Под контрольными суммами имеется в виду результат операции XOR.XOR дает возможность заменить результатом любой операнд и, использовав алгоритм XOR, в результате получить недостающий операнд. Чтобы сохранить результат XOR , необходим всего один диск (размер его идентичен размеру любого диска в raid).

Плюсы:

Популярность RAID5 объясняется, прежде всего, его экономичностью. На запись на том RAID5 тратятся дополнительные ресурсы, что приводит в итоге к падению производительности, поскольку необходимы дополнительные вычисления, а также операции записи. Но зато при чтении (в сравнении с отдельным жестким диском) имеется определенный выигрыш, состоящий в том, что идущие с нескольких дисков потоки данных могут обрабатываться параллельно.


Минусы:

RAID 5 характеризуется намного более низкой производительностью, особенно при проведении операций, связанных с записью в произвольном порядке (типа Random Write), при которых производительность уменьшается на 10-25 процентов от производительности RAID 10 или RAID 0. Происходит это потому, что данному процессу требуется больше операций с дисками (происходит замена каждой операции записи сервера на RAID контроллере на 3 операции – 1 операцию чтения и 2 операции записи). Минусы RAID 5 проявляются тогда, когда из строя выходит один диск – при этом наблюдается переход всего тома в критический режим, все операции чтения и записи сопровождаются дополнительными манипуляциями, что приводит к резкому падению производительности. Уровень надежности при этом падает до уровня надежности RAID 0, снабженного соответствующим количеством дисков, становясь в n раз меньше надежности одиночного диска. В случае, если до восстановления массива выйдет из строя еще хоть один диск либо на нем возникнет невосстановимая ошибка, массив разрушится, причем данные на нем обычными методами восстановить не удастся. Учтите также, что процесс восстановления за счет избыточности данных RAID, носящий название RAID Reconstruction, после того, как диск выйдет из строя, вызовет интенсивную непрерывную нагрузку чтения со всех дисков, которая будет сохраняться в течение многих часов. В результате этого один из оставшихся дисков может выйти из строя. Также могут выявиться не обнаруженные ранее сбои чтения данных вcold data массивах (тех данных, к которым во время обычной работы массива не обращаются – малоактивных и архивных), что приводит к повышению риска сбоя во время восстановления данных.



6. – это массив RAID 50, который построен из массивов RAID5;

7. – массив дисковый с чередованием, который использует 2 контрольные суммы, вычисляемые 2-мя независимыми способами.

RAID 6 во многом аналогичен RAID 5, однако отличается от него более высокой степенью надежности: в нем под контрольные суммы происходит выделение емкости двух дисков, две суммы рассчитываются по различным алгоритмам. Необходим RAID-контроллер более высокой мощности. Помогает защитить от кратного отказа, обеспечивая работоспособность после выхода из строя одновременно двух дисков. Организация массива требует использования минимум четырех дисков. Использование RAID-6 обычно приводит к падению производительности дисковой группы приблизительно на 10-15 процентов. Это объясняется большим объемом информации, которую приходится обрабатывать контроллеру (появляется необходимость в расчете второй контрольной суммы, а также чтении и перезаписи большего количества дисковых блоков в процессе записи каждого из блоков).

8. – это массив RAID 0, который построен из массивов RAID6.

9. Hybrid RAID . Это еще один уровень массива RAID, ставший в последнее время достаточно популярным. Это обычные уровни RAID, используемые вместе с дополнительным программным обеспечением, а также SSD-дисками, которые применяются в качестве кэша для чтения. Это приводит к увеличению производительности системы, объясняемой тем, что SSD, в сравнении с HDD, обладают намного лучшими скоростными характеристиками. Сегодня существует несколько реализаций, к примеру, Crucial Adrenaline, а также несколько бюджетных контроллеров Adaptec. В настоящее время использование Hybrid RAID из-за маленького ресурса SSD-дисков не рекомендуется.


Операции считывания в Hybrid RAID выполняются с твердотельного накопителя, обладающего большей скоростью, а операции записи осуществляются и на твердотельных накопителях, и на жестких дисках (делается это с целью выполнения резервирования).
Hybrid RAID отлично подходит для приложений, использующих данные нижнего уровня (виртуальной вычислительной машины, файлового сервера либо интернет-шлюза).

Особенности современного рынка СХД

Аналитическая компания IDC летом 2013 г. обнародовала очередной свой прогноз для рынка СХД , рассчитанный ею до 2017 г. Подсчеты аналитиков демонстрируют, что в ближайшее четырехлетие мировыми предприятиями будут закуплены СХД , общая емкость которых составит сто тридцать восемь экзабайт. Совокупная реализуемая мощность систем хранения ежегодно будет увеличиваться примерно на тридцать процентов.

Тем не менее, в сравнении с предыдущими годами, когда наблюдался бурный рост потребления хранилищ данных, темпы этого роста несколько замедлятся, так как сегодня большинство компаний использует облачные решения, отдавая предпочтение технологиям, оптимизирующим хранилища данных. Экономия места в хранилищах достигается при помощи таких средств, как виртуализация, сжатие данных, дедупликация данных и пр. Все вышеперечисленные средства обеспечивают экономию места, позволяя компаниям избегать спонтанных покупок и прибегать к приобретению новых систем хранения лишь тогда, когда в них действительно имеется необходимость.

Из 138 экзабайт, продажа которых ожидается в 2017 г., 102 экзабайта будет приходиться на внешние СХД , а 36 – на внутренние. В 2012 г. было реализовано СХД на двадцать экзабайт для внешних систем и на восемь – для внутренних. Финансовые затраты на промышленные СХД ежегодно будут увеличиваться приблизительно на 4,1 процента и к 2017 г. составят порядка сорока двух с половиной миллиардов долларов.

Мы уже отмечали, что переживший недавно настоящий бум мировой рынок СХД постепенно пошел на спад. В 2005 г. рост потребления СХД составил на промышленном уровне шестьдесят пять процентов, а в 2006, а также 2007 г. – по пятьдесят девять процентов. В последующие годы рост потребления СХД еще больше снизился из-за негативного влияния мирового экономического кризиса.

Аналитики прогнозируют, что рост использования облачных СХД приведет к уменьшению потребления решений систем хранения данных на корпоративном уровне. Облачные провайдеры тоже осуществляют активные закупки для своих нужд систем хранения данных, к примеру, Facebook и Google строят из готовых компонентов по индивидуальному заказу собственные серверы, но эти серверы в отчете IDC не учитываются.

Также в компании IDC ожидают, что вскоре развивающиеся рынки в отношении потребления СХД существенно обгонят рынки развитые, поскольку им свойственны более высокие темпы экономического роста. К примеру, регион Восточной и Центральной Европы, Африки и Ближнего Востока в 2014 г. по расходам на системы хранения данных превзойдет Японию. К 2015 г. Азиатско-Тихоокеанский регион, исключая Японию, по объему потребления систем хранения данных превзойдет Западную Европу.

Оперативная продажа систем хранения данных

Выполняемая нашей компанией «Навигатор» продажа систем хранения данных дает возможность каждому желающему получить надежную и долговечную основу для хранения своих мультимедийных данных. Широкий выбор Raid массивов, сетевых хранилищ и прочих систем дает возможность в индивидуальном порядке подобрать для каждого заказчика тот комплекс, который подойдет для него наилучшим образом.

Широкие технические возможность, грамотность и опыт персонала компании гарантируют быстрое и комплексное выполнение поставленной задачи. При этом мы не ограничивается исключительно продажей систем хранения данных, поскольку выполняем также ее настройку, запуск и последующее сервисное и техническое обслуживание.

В этой статье речь пойдет о системах хранения данных начального и среднего уровня, а также тех тенденциях, которые сегодня ярко выделяются в этой отрасли. Для удобства будем называть системы хранения данных накопителями.

Сначала мы немного остановимся на терминологии и технологических основах автономных накопителей, а потом перейдём к новинкам и обсуждению современных достижений в разных технологических и маркетинговых группах. Мы также обязательно расскажем о том, зачем нужны системы того или иного вида и насколько эффективным является их использование в разных ситуациях.

Автономные дисковые подсистемы

Для того, чтобы лучше понять особенности автономных накопителей, остановимся немного на одной из более простых технологий построения систем хранения данных - шинно-ориентированной технологии. Она предусматривает использование корпуса для дисковых накопителей и контроллера PCI RAID.

Рисунок 1. Шинно-ориентированная технология постоения систем хранения данных

Таким образом, между дисками и PCI-шиной хоста (от англ. Host - в данном случае автономный компьютер, например сервер или рабочая станция) есть только один контроллер, который в значительной мере и задает быстродействие системы. Накопители, построенные по этому принципу, являются наиболее производительными. Но в связи с архитектурными особенностями практическое их использование, за исключением редких случаев, ограничивается конфигурациями с одним хостом.

К недостаткам шинно-ориентированной архитектуры накопителей следует отнести:

  • эффективное использование только в конфигурациях с одним хостом;
  • зависимость от операционной системы и платформы;
  • ограниченную масштабируемость;
  • ограниченные возможности по организации отказоустойчивых систем.

Естественно, всё это неважно, если данные нужны для одного сервера или рабочей станции. Наоборот, в такой конфигурации вы получите максимальное быстродействие за минимальные деньги. Но если вам нужна система хранения данных для большого вычислительного центра или даже для двух серверов, которым нужны одни и те же данные, шинно-ориентированная архитектура совершенно не подходит. Недостатков этой архитектуры позволяет избежать архитектура автономных дисковых подсистем. Основной принцип ее построения достаточно прост. Контроллер, который управляет системой, переносится из хост-компьютера в корпус накопителя, обеспечивая независимое от хост-систем функционирование. Следует отметить, что такая система может иметь большое количество внешних каналов ввода/вывода, что обеспечивает возможность подключения к системе нескольких, или даже многих компьютеров.


Рисунок 2. Автономная система хранения данных

Любая интеллектуальная система хранения данных состоит из аппаратной части и программного кода. В автономной системе всегда есть память, в которой хранится программа алгоритмов работы самой системы и процессорные элементы, которые этот код обрабатывают. Такая система функционирует независимо от того, с какими хост-системами она связана. Благодаря своей интеллектуальности автономные накопители зачастую самостоятельно реализуют множество функций по обеспечению сохранности и управлению данными. Одна из самых важных базовых и практически повсеместно используемых функций - это RAID (Redundant Array of Independent Disks). Другая, принадлежащая уже системам среднего и высокого уровня - это виртуализация. Она обеспечивает такие возможности как мгновенная копия или удаленное резервирование, а также другие, достаточно изощрённые алгоритмы.

Коротко о SAS, NAS, SAN

В рамках рассмотрения автономных систем хранения данных обязательно следует остановиться на том, каким образом осуществляется доступ хост-систем к накопителям. Это в значительной мере определяет сферы их использования и внутреннюю архитектуру.

Различают три основных варианта организации доступа к накопителям:

  • SAS (Server Attached Storage) - накопитель, подсоединенный к серверу [ второе название DAS (Direct Attached Storage) - напрямую подсоединённый накопитель ];
  • NAS (Network Attached Storage) - накопитель, подсоединенный к сети;
  • SAN (Storage Area Network) - сеть хранения данных.

Мы уже писали о технологиях SAS/DAS, NAS и SAN в статье посвященной SAN, если кого эта информация заинтересует, рекомендуем обратиться к страницам iXBT . Но всё же позволим себе немножко освежить материал с акцентом на практическое использование.

SAS/DAS - это достаточно простой традиционный способ подключения, который подразумевает прямое (отсюда и DAS) подсоединение системы хранения к одной или нескольким хост-системам через высокоскоростной канальный интерфейс. Часто в таких системах, для подсоединения накопителя к хосту используется такой же интерфейс, который используется для доступа к внутренним дискам хост-системы, что в общем случае обеспечивает высокое быстродействие и простое подключение.

SAS-систему можно рекомендовать к использованию в случае, если имеется потребность в высокоскоростной обработке данных больших объемов на одной или нескольких хост-системах. Это, например, может быть файл-сервер, графическая станция или отказоустойчивая кластерная система, состоящая из двух узлов.



Рисунок 3. Кластерная система с общим накопителем

NAS - накопитель, который подсоединен к сети и обеспечивает файловый (обратите внимание - файловый, а не блочный) доступ к данным для хост-систем в сети LAN/WAN. Клиенты, которые работает с NAS, для доступа к данным обычно используют протоколы NSF (Network File System) или CIFS (Common Internet File System). NAS интерпретирует команды файловых протоколов и исполняет запрос к дисковым накопителям в соответствии с используемым в нём канальным протоколом. Фактически, архитектура NAS - это эволюция файловых серверов. Главным преимуществом такого решения является быстрота развёртывания и качество организации доступа к файлам, благодаря специализации и узкой направленности.

Исходя из сказанного, NAS можно рекомендовать для использования в случае, если нужен сетевой доступ к файлам и достаточно важными факторами являются: простота решения (что обычно является неким гарантом качества) и простота его сопровождения и установки . Прекрасным примером является использование NAS в качестве файл-сервера в офисе небольшой компании, для которой важна простота установки и администрирования. Но в то же время, если вам нужен доступ к файлам с большого количества хост-систем, мощный NAS-накопитель, благодаря отточенному специализированному решению, способен обеспечить интенсивный обмен трафиком с огромным пулом серверов и рабочих станций при достаточно низкой стоимости используемой коммуникационной инфраструктуры (например, коммутаторов Gigabit Ethernet и медной витой пары).

SAN - сеть хранения данных. Обычно в SAN используется блочный доступ к данным, хотя возможно подключение к сетям хранения данных устройств, предоставляющих файловые сервисы, например NAS. В современных реализациях сети хранения данных чаще всего используют протокол Fibre Channel, но в общем случае это не является обязательным, в связи с чем, принято выделять отдельный класс Fibre Channel SAN (сети хранения данных на основе Fibre Channel).

Основой SAN является отдельная от LAN/WAN сеть, которая служит для организации доступа к данным серверов и рабочих станций, непосредственно занимающихся обработкой. Такая структура делает построение систем с высокой готовностью и высокой интенсивностью запросов относительно простой задачей. Несмотря на то, что SAN сегодня остается дорогим удовольствием, TCO (общая стоимость владения) для средних и больших систем, построенных с использованием технологии сетей хранения данных, является довольно низкой. Описание способов снижения TCO корпоративных систем хранения данных благодаря SAN можно найти на страницах ресурса techTarget: http://searchstorage.techtarget.com .

Сегодня стоимость дисковых накопителей с поддержкой Fibre Channel, как наиболее распространенного интерфейса для построения SAN, близка к стоимости систем с традиционными недорогими канальными интерфейсами (такими как параллельный SCSI). Главными стоимостными составляющими в SAN остается коммуникационная инфрастуктура, а также стоимость ее развёртывания и сопровождения. В связи с чем, в рамках SNIA и многих коммерческих организациях ведётся активная работа над технологиями IP Storage, что позволяет использовать значительно более недорогую аппаратуру и инфраструктуру IP-сетей, а также колоссальный опыт специалистов в этой сфере.

Примеров по эффективному использованию SAN можно привести достаточно много. Практически везде, где имеется необходимость использования нескольких серверов с совместной системой хранения данных, можно использовать SAN. Например, для организации коллективной работы над видеоданными или предварительной обработки печатной продукции. В такой сети каждый участник процесса обработки цифрового контента получает возможность практически одновременно работать над Терабайтами данных. Или, например, организация резервирования больших объемов данных, которыми пользуется множество серверов. При построении SAN и использовании независимого от LAN/WAN алгоритма резервирования данных и технологий «моментальной копии», можно резервировать почти любые объёмы информации без ущерба функциональности и производительности всего информационного комплекса.

Fibre Channel в сетях хранения данных

Безусловным фактом является то, что сегодня именно FC (Fibre Channel) доминирует в сетях хранения данных. И именно развитие этого интерфейса привело к развитию самой концепции SAN.

В проектировании FC принимали участие специалисты со значительным опытом в разработке как канальных, так и сетевых интерфейсов, и им удалось объединить все важные положительные черты обоих направлений. Одним из важнейших преимуществ Fibre Channel наряду со скоростными параметрами (которые, кстати, не всегда являются главными для пользователей SAN, и могут быть реализованы с помощью других технологий) является возможность работы на больших расстояниях и гибкость топологии, которая пришла в новый стандарт из сетевых технологий. Таким образом, концепция построения топологии сети хранения данных базируется на тех же принципах, что и традиционные локальные сети, на основе концентраторов, коммутаторов и маршрутизаторов, что значительно упрощает построение многоузловых конфигураций систем, в том числе без единой точки отказов.

Стоит также отметить, что в рамках Fibre Channel для передачи данных используются как оптоволоконные, так и медные среды. При организации доступа к территориально удаленным узлам на расстоянии до 10 киллометров используется стандартная аппаратура и одномодовое оптоволокно для передачи сигнала. Если же узлы разнесены на 10-ки или даже 100-ни километров используются специальные усилители. При построении таких SAN учитываются достаточно нетрадиционные для систем хранения данных параметры, например, скорость распространения сигнала в оптоволокне.

Тенденции развития систем хранения данных

Мир систем хранения данных чрезвычайно разнообразен. Возможности систем хранения данных, так и стоимость решений достаточно дифференцирована. Существуют решения, объединяющие в себе возможности обслуживания сотен тысяч запросов в секунду к десяткам и даже сотням Терабайт данных, а также решения для одного компьютера с недорогими дисками с IDE-интерфейсом.

IDE RAID

В последнее время максимальный объем дисков с IDE-интерфейсом колоссально увеличился и опережает SCSI-диски примерно в два раза, а если говорить о соотношении цена на единицу объёма, то IDE-диски лидируют с разрывом более чем в 6 раз. Это, к сожалению, не повлияло положительно на надежность IDE-дисков, но всё же сфера их применения в автономных системах хранения данных неумолимо увеличивается. Главным фактором в этом процессе является то, что потребность в больших объёмах данных растёт быстрее, чем объем одиночных дисков.

Еще несколько лет назад редкие производители решались выпускать автономные подсистемы, ориентированные на использование IDE-дисков. Сегодня их выпускает практически каждый производитель, ориентированный на рынок систем начального уровня. Наибольшее распространение в классе автономных подсистем с IDE-дисками наблюдается в NAS-системах начального уровня. Ведь если вы используете NAS в качестве файлового сервера с интерфейсом Fast Ethernet или даже Gigabit Ethernet, то в большинстве случаев быстродействия таких дисков является более чем достаточным, а их низкая надёжность компенсируется использованием технологии RAID.

Там, где необходим блочный доступ к данным при минимальной цене за единицу хранимой информации, сегодня активно используются системы с IDE-дисками внутри и с внешним SCSI-интерфейсом. Например, на системе JetStor IDE производства американской компании AC&NC для построения отказоустойчивого архива с объёмом хранимых данных в 10 Терабайт и возможностью быстрого блочного доступа к данным стоимость хранения одного Мегабайта будет составлять меньше 0,3 цента.

Ещё одной интересной и достаточно оригинальной технологией, с которой пришлось познакомиться совсем недавно, была система Raidsonic SR-2000 с внешним параллельным IDE-интерфейсом.


Рисунок 4. Автономный IDE RAID начального уровня

Это автономная дисковая система, рассчитанная на использование двух IDE дисков и ориентированная на монтаж внутри корпуса хост-системы. Она абсолютно независима от операционной системы на хост-машине. Система позволяет организовать RAID 1 (зеркало) или просто копирование данных с одного диска на другой с возможностью горячей замены дисков, без какого-либо ущерба или неудобства со стороны пользователя компьютера, чего не скажешь о шинно-ориентированых подсистемах, построенных на контроллерах PCI IDE RAID.

Следует заметить, что ведущие производители IDE-дисков анонсировали выпуск дисков среднего класса с интерфейсом Serial ATA, в которых будут использоваться высокоуровневые технологии. Это должно благоприятно повлиять на их надежность и увеличить долю ATA-решений в системах хранения данных.

Что нам принесёт Serial ATA

Первое и самое приятное, что можно найти в Serial ATA - это кабель. В связи с тем, что интерфейс ATA стал последовательным, кабель стал круглым, а коннектор - узким. Если вам приходилось укладывать кабели параллельного IDE-интерфейса в системе на восемь IDE-каналов, я уверен, что вам понравится эта особенность. Конечно, уже давно существовали круглые IDE-кабели, но коннектор у них всё же оставался широким и плоским, да и максимально допустимая длина параллельного ATA-кабеля не радует. При построении систем с большим количеством дисков, наличие стандартного кабеля вообще не сильно помогает, так как кабели приходится делать самостоятельно, и при этом их укладка становится едва ли не главной по времени задачей при сборке.

Кроме особенности кабельной системы, в Serial ATA есть другие нововведения, которые для параллельной версии интерфейса реализовать самостоятельно с помощью канцелярского ножа и другого подручного инструмента не удастся. В дисках с новым интерфейсом скоро должна появиться поддержка набора инструкций Native Command Queuing (конвейеризации команд). При использовании Native Command Queuing, контроллер Serial ATA анализирует запросы ввода-вывода и оптимизирует очередность их выполнения таким образом, чтобы минимизировать время поиска. Достаточно очевидна схожесть идеи Serial ATA Native Command Queuing с организацией очереди команд в SCSI, правда, для Serial ATA будет поддерживаться очередь до 32 команд, а не традиционных для SCSI - 256. Появилась также родная поддержка горячей замены устройств. Конечно, такая возможность существовала и ранее, но её реализация была за рамками стандарта и, соответственно, не могла получить широкое распространение. Говоря о новых скоростных возможностях Serial ATA, следует заметить, что сейчас от них радости пока большой нет, но главное здесь то, что на будущее есть хороший Roadmap, реализовать который в рамках параллельного ATA было бы очень не просто.

Учитывая сказанное, можно не сомневаться, что доля ATA-решений в системах хранения начального уровня должна увеличиться именно за счёт новых дисков Serial ATA и систем хранения данных, ориентированных на использование таких устройств.

Куда идет параллельный SCSI

Все, кто работает с системами хранения данных, даже начального уровня, вряд ли могут сказать, что им нравятся системы с IDE-дисками. Главное преимущество ATA дисков - их низкая цена, по сравнению со SCSI-устройствами ну и еще, наверное, более низкий уровень шума. И происходит всё это по простой причине, так как SCSI-интерфейс лучше подходит для использования в системах хранения данных и пока значительно дешевле, чем еще более функциональный интерфейс - Fibre Channel, то и диски со SCSI-интерфейсом производятся более качественные, надёжные и быстрые, чем с дешёвым IDE-интерфейсом.

Сегодня многие производители при проектировании систем хранения с параллельным SCSI используют Ultra 320 SCSI, самый новый интерфейс в семействе. Некогда во многих Roadmap были планы по выпуску устройств с интерфейсом Ultra 640 и даже Ultra 1280 SCSI, но всё шло к тому, что в интерфейсе нужно что-то менять кардинальным образом. Параллельный SCSI уже сейчас, на этапе использования Ultra 320, многих не устраивает, главным образом по причине неудобства использования классических кабелей.

К счастью, недавно появился новый интерфейс Serial Attached SCSI (SAS). У нового стандарта будут интересные особенности. Он объединяет в себе некоторые возможности Serial ATA и Fibre Channel. Несмотря на эту странность, следует сказать, что в таком переплетении есть некий здравый смысл. Стандарт возник на основе физических и электрических спецификаций последовательного ATA с такими усовершенствованиями, как увеличение уровня сигнала для соответствующего увеличения длинны кабеля, увеличение максимальной адресуемости устройств. А самое интересное то, что технологи обещают обеспечить совместимость устройств Serial ATA и SAS, но только в следующих версиях стандартов.

К наиболее важным особенностям SAS можно отнести:

  • интерфейс точка-точка;
  • двухканальный интерфейс;
  • поддержка 4096 устройств в домене;
  • стандартный набор команд SCSI;
  • кабель длинной до 10 метров;
  • кабель 4-жильный;
  • полный дуплекс.

Благодаря тому, что новый интерфейс предлагает использовать такой же миниатюрный коннектор, как и Serial ATA, у разработчиков появляется новая возможность по построению более компактных устройств с высокой производительностью. Стандарт SAS также предусматривает использование расширителей. Каждый расширитель будет поддерживать адресацию 64-х устройств с возможностью каскадирования до 4096 устройств в рамках домена. Это конечно значительно меньше, чем возможности Fibre Channel, но в рамках систем хранения начального и среднего уровней, с накопителями, напрямую подсоединенными к серверу, этого вполне достаточно.

Несмотря на все прелести, интерфейс Serial Attached SCSI вряд ли быстро заместит обычный параллельный интерфейс. В мире решений для предприятий разработки обычно ведутся более тщательно и, естественно, в течение большего времени, чем для настольных систем. Да и уходят старые технологии не очень быстро, так как период, за который они отрабатывают себя, тоже немаленький. Но всё же, в году 2004 устройства с интерфейсом SAS должны выйти на рынок. Естественно, сначала это будут в основном диски и PCI-контролеры, но ещё через годик подтянутся и системы хранения данных.

Для лучшего обобщения информации предлагаем ознакомиться со сравнением современных и новых интерфейсов для систем хранения данных в виде таблицы.

1 - Стандарт регламентирует расстояние до 10 км для одномодового оптоволокна, существуют реализации устройств для передачи данных на расстояние больше чем, 105 м.

2 - В рамках внутренней виртуальной топологии кольца работают концентраторы и некоторые коммутаторы FC, также существует много реализаций коммутаторов, которые обеспечивают соединение точка-точка любых устройств, подсоединенных к ним.

3 - Cуществуют реализации устройств со SCSI, FICON, ESCON, TCP/I, HIPPI, VI протоколами.

4 - Дело в том, что устройства будут взаимно совместимы (так обещают сделать в ближайшем будущем производители). То есть SATA-контроллеры будут поддерживать SAS-диски, а SAS-контроллеры - диски SATA.

Массовое увлечение NAS

Последнее время за рубежом отмечается просто-таки массовое увлечение NAS-накопителями. Дело в том, что с увеличением актуальности ориентированного на данные подхода к построению информационных систем увеличилась привлекательность специализации классических файл-серверов и формирование новой маркетинговой единицы - NAS. При этом опыт в построении подобных систем был достаточным для быстрого старта технологии накопителей, подсоединенных к сети, а стоимость их аппаратной реализации была предельно низкой. Сегодня NAS-накопители производят фактически все производители систем хранения данных, среди них и системы начального уровня за очень маленькие деньги, и среднего, и даже системы, отвечающие за хранение десятков Терабайт информации, способные обработать колоссальное количество запросов. В каждом классе NAS-систем есть свои интересные оригинальные решения.

NAS на основе PC за 30 минут

Мы хотим немного описать одно оригинальное решение начального уровня. О практической ценности его реализации можно спорить, но в оригинальности ему не откажешь.

По сути дела, NAS-накопитель начального уровня, да и не только начального, является достаточно простым персональным компьютером с неким количеством дисков и программной частью, которая обеспечивает доступ других участников сети к данным на файловом уровне. Таким образом, для построения NAS устройства достаточно взять указанные компоненты и соединить их между собой. Все дело в том, насколько качественно вы это сделаете, настолько же надежный и качественный доступ к данным получит рабочая группа, работающая с данными, доступ к которым обеспечивает ваше устройство. Именно учитывая эти факторы, а также время развёртывания решения, плюс некоторые дизайнерские изыскания строится NAS-накопитель начального уровня.

Разница между хорошим NAS-решением начального уровня с самостоятельно собранной и настроенной в рамках выбранной ОС персоналкой, если опять-таки опустить конструктивное исполнение, будет в том:

  • насколько быстро вы это сделаете;
  • насколько просто сможет обслуживаться эта система неквалифицированным персоналом;
  • насколько качественно это решение будет работать и поддерживаться.

Другими словами, в случае профессионального подбора комплектующих и существования некого изначально настроенного набора программного обеспечения, можно достичь хорошего результата. Истина вроде банальная, это же можно сказать о любой задаче, которая решается по схеме готовых компонентных решений: «hardware» плюс «software».

Что предлагает сделать компания «X»? Формируется достаточно ограниченый список совместимых комплектующих: материнских плат со всем интегрированным хозяйством, нужных NAS-серверу начального уровня жёстких дисков. Вы покупаете устанавливаемый в IDE-разъём на материнской плате FLASH диск с записанным программным обеспечением и получаете готовый NAS накопитель. Операционная система и утилиты, записанные на этот диск, загружаясь, конфигурируют нужные модули адекватным образом. И в результате пользователь получает устройство, которое может управляться как локально, так и удаленно через HTML-интерфейс и предоставлять доступ к дисковым накопителям, подключённым к нему.

Файловые протоколы в современных NAS

CIFS (Common Internet File System) - это стандартный протокол, который обеспечивает доступ к файлам и сервисам на удаленных компьютерах (в том числе и в Интернет). Протокол использует клиент-серверную модель взаимодействия. Клиент создает запрос к серверу на доступ к файлам или передачу сообщения программе, которая находится на сервере. Сервер выполняет запрос клиента и возвращает результат своей работы. CIFS - это открытый стандарт, который возник на основе SMB-протокола (Server Message Block Protocol), разработанного Microsoft, но, в отличие от последнего, CIFS учитывает возможность возникновения больших таймаутов, так как ориентирован на использование в том числе и в распределённых сетях. SMB-протокол традиционно использовался в локальных сетях с ОС Windows для доступа к файлам и печати. Для транспортировки данных CIFS использует TCP/IP протокол. CIFS обеспечивает функциональность похожую на FTP (File Transfer Protocol), но предоставляет клиентам улучшенный (похожий на прямой) контроль над файлами. Он также позволяет разделять доступ к файлам между клиентами, используя блокирование и автоматическое восстановление связи с сервером в случае сбоя сети.

NFS (Network File System) - это стандарт IETF, который включает в себя распределенную файловую систему и сетевой протокол. NFS был разработан компанией Sun Microsystem Computer Corporation. Он первоначально использовался только в UNIX-системах, позже реализации клиентской и серверной чатей стали распространенными и в других системах.

NFS, как и CIFS, использует клиент-серверную модель взаимодействия. Он обеспечивает доступ к файлам на удаленном компьютере (сервере) для записи и считывания так, как если бы они находились на компьютере пользователя. В ранних версиях NFS для транспортирования данных использовался UDP-протокол, в современных - используется TCP/IP. Для работы NFS в интерент компанией Sun был разработан протокол WebNFS, который использует расширения функциональности NFS для его корректной работы во всемирной сети.

DAFS (Direct Access File System) - это стандартный протокол файлового доступа, который базируется на NFSv4. Он позволяет прикладным задачам передавать данные в обход операционной системы и ее буферного пространства напрямую к транспортным ресурсам, сохраняя семантику, свойственную файловым системам. DAFS использует преимущества новейших технологий передачи данных по схеме память-память. Его использование обеспечивает высокие скорости файлового ввода-вывода, минимальную загрузку CPU и всей системы, благодаря значительному уменьшению количества операций и прерываний, которые обычно необходимы при обработке сетевых протоколов. Особенно эффективным является использование аппаратных средств поддержки VI (Virtual Interface).

DAFS проектировался с ориентацией на использование в кластерном и серверном окружении для баз данных и разнообразных интернет-приложений, ориентированных на непрерывную работу. Он обеспечивает наименьшие задержки доступа к общим файловым ресурсам и данным, а также поддерживает интеллектуальные механизмы восстановления работоспособности системы и данных, что делает его очень привлекательным для использования в High-End NAS-накопителях.

Все дороги ведут к IP Storage

В системах хранения данных высокого и среднего уровня за последние несколько лет появилось очень много новых интересных технологий.

Fibre Channel сети хранения данных сегодня уже достаточно известная и популярная технология. В то же время, их массовое распространение сегодня является проблематичным из-за ряда особенностей. К ним можно отнести высокую стоимость реализации и сложность построения географически распределённых систем. С одной стороны - это всего лишь особенности технологии уровня предприятия, но с другой, если SAN станет дешевле, и построение распределённых систем упростится, это должно дать просто-таки колоссальный прорыв в развитии сетей хранения данных.

В рамках работы над сетевыми технологиями хранения данных в Internet Engineering Task Force (IETF) была создана рабочая группа и форум IP Storage (IPS) по направлениям:

FCIP - Fibre Channel over TCP/IP, созданный на базе TCP/IP туннельный протокол, функцией которого является соединение географически удаленных FC SAN без какого либо воздействия на FC и IP протоколы.

iFCP - Internet Fibre Channel Protocol, созданный на базе TCP/IP протокол для соединения FC систем хранения данных ли FC сетей хранение данных, используя IP инфраструктуру совместно или вместо FC коммутационных и маршрутизирующих элементов.

iSNS - Internet Storage Name Service, протокол поддержке имён накопителей в сети Интернет.

iSCSI - Internet Small Computer Systems Interface, это протокол, который базируется на TCP/IP и разработан для установления взаимодействия и управления системами хранения данных, серверами и клиентами (Определение SNIA - IP Storage Forum: ).

Самым бурно развивающимся и самым интересным из перечисленных направлений является iSCSI.

iSCSI - новый стандарт

11 февраля 2003 года iSCSI стал официальным стандартом. Ратификация iSCSI обязательно повлияет на более широкий интерес к стандарту, который уже развивается достаточно активно. Быстрее всего развитие iSCSI послужит толчком к распространению SAN в малом и среднем бизнесе, так как использование соответствующего стандарту оборудования и подхода к обслуживанию (в том числе распространённого в рамках стандартных Ethernet сетей) позволит сделать сети хранения данных значительно дешевле. Что же касается использования iSCSI в Интернет, то сегодня здесь уже неплохо прижился FCIP, и конкуренция с ним будет трудной.

Новый стандарт охотно поддержали известные IT-компании. Есть, конечно, и противники, но всё же, практически все компании, которые активно участвуют в рынке систем начального и среднего уровня, уже работают над устройствами с поддержкой iSCSI. В Windows и Linux iSCSI драйверы уже включены, системы хранения данных iSCSI производит IBM, адаптеры - Intel, в ближайшее время подключиться к процессу освоения нового стандарта обещают HP, Dell, EMC.

Одной из очень интересных особенностей iSCSI является то, что для передачи данных на накопителе с интерфейсом iSCSI можно использовать не только носители, коммутаторы и маршрутизаторы существующих сетей LAN/WAN, но и обычные сетевые адаптеры Fast Ethernet или Gigabit Ethernet на стороне клиента. Правда, при этом возникают значительные накладные расходы процессорной мощности ПК, который использует такой адаптер. По утверждению разработчиков, программная реализация iSCSI может достичь скоростей среды передачи данных Gigabit Ethernet при значительной, до 100% загрузке современных CPU. В связи с чем рекомендуется использование специальных сетевых карточек, которые будут поддерживать механизмы разгрузки CPU от обработки стека TCP.

Виртуализация в сетях хранения данных

Ёщё одной важной технологией в построении современных накопителей и сетей хранения данных является виртуализация.

Виртуализация систем хранения данных - это представление физических ресурсов в некоем логическом, более удобном виде. Эта технология позволяет гибко распределять ресурсы между пользователями и эффективно ими управлять. В рамках виртуализации успешно реализуется удаленное копирование, моментальная копия, распределение запросов ввода-вывода на наиболее подходящие по характеру обслуживания накопители и множество других алгоритмов. Реализация алгоритмов виртуализации может осуществляться как средствами самого накопителя, так и с помощью внешних устройств виртуализации или же с помощью управляющих серверов, на которых работает специализированное программное обеспечение под стандартными ОС.

Это, конечно, очень малая часть того, что можно сказать о виртуализации. Эта тема очень интересна и обширна, поэтому мы решили посвятить ей отдельную публикацию.

Каково назначение систем хранения данных (СХД)?

Системы хранения данных предназначены для безопасного и отказоустойчивого хранения обрабатываемых данных с возможностями быстрого восстановления доступа к данным в случае сбоя в работе системы.

Какие основные разновидности СХД?

По типу реализации СХД делятся на аппаратные и программные. По области применения СХД делятся на индивидуальные, для малых рабочих групп, для рабочих групп, для предприятий, корпоративные. По типу подключения СХД делятся на:

1. DAS (Direct Attached Storage — системы с прямым подключением)

Особенностью данного типа систем является то, что контроль за доступом к данным для устройств, подключенных к сети, осуществляется сервером или рабочей станцией, к которой подключено хранилище.

2. NAS (Network Attached Storage — системы, подключаемые к ЛВС)

В данном типе систем доступ к информации, размещенной в хранилище, контролируется программным обеспечением, которое работает в самом хранилище.

3. SAN (Storage Attached Network — системы, представляющие собой сеть между серверами, которые обрабатывают данные и, собственно, СХД);

При таком способе построения системы хранения данных контроль за доступом к информации осуществляется программным обеспечением, работающим на серверах СХД. Через коммутаторы SAN производится подключение хранилища к серверам по высокопроизводительным протоколам доступа (Fibre channel, iSCSI, ATA over ethernet, и т.п.)

Каковы особенности программной и аппаратной реализации СХД?

Аппаратная реализация СХД представляет собой единый аппаратный комплекс, состоящий из устройства хранения (представляющего собой диск или массив дисков, на которых данные физически хранятся), и устройства управления (контроллер, занимающийся распределением данных между элементами хранилища).

Программная реализация СХД представляет собой распределенную систему, в которой данные хранятся без привязки к какому-либо конкретному хранилищу или серверу, и доступ к данным осуществляется посредством специализированного ПО, которое отвечает за сохранность и безопасность хранимых данных).

Система хранения данных (СХД) представляет собой комплекс программных и аппаратных средств, созданных для управления и хранения больших объёмов информации. Основными носителями информации в данное время являются жёсткие диски, объёмы которых совсем недавно достигли 1 терабайта. Основным хранилищем информации в малых компаниях являются файловые серверы и серверы СУБД, данные которых хранятся на локальных жёстких дисках. В крупных компаниях объёмы информации могут достигать сотен терабайт, причём к ним выдвигаются ещё большие требования по скорости и надёжности. Никакие локально подключенные к серверам диски не могут удовлетворить этим потребностям. Именно поэтому крупные компании внедряют системы хранения данных (СХД).

Основными компонентами СХД являются: носители информации, системы управления данными и сети передачи данных.

  • Носители информации. Как уже было сказано выше, сейчас основными носителями информации являются жёсткие диски (возможно в ближайшем будущем будут заменены твердотельными электронными накопителями SSD). Жёсткие диски, подразделяются на 2 основных типа: надёжные и производительные SAS (Serial Attached SCSI) и более экономичные SATA. В системах резервного копирования также применяются ленточные накопители (стриммеры).
  • Системы управления данными. СХД предоставляет мощные функции по управлению данными. СХД обеспечивает функции зеркалирования и репликации данных между системами, поддерживает отказоустойчивые, самовосстанавливающиеся массивы, предоставляет функции мониторинга, а также функции резервного копирования на аппаратном уровне.
  • Сети передачи данных. Сети передачи данных предоставляют среду, по которой осуществляется связь между серверами и СХД или связь одной СХД с другой. Жёсткие диски разделяют по типу подключения: DAS (Direct Attached Storage) - непосредственно подключенные к серверу диски, NAS (Network Attached Storage) – диски, подключенные по сети (доступ к данным осуществляется на уровне файлов, обычно по FTP, NFS или SMB) и SAN (Storage Area Network) – сети хранения данных (предоставляют блочный доступ). В крупных системах хранения данных основным типом подключения является SAN. Существует 2 метода построения SAN на основе Fibre Channel и iSCSI. Fibre Channel (FC) в основном применяется для соединения внутри одного центра обработки данных. А iSCSI представляет собой протокол передачи SCSI команд поверх IP, которые могут маршрутизироваться обычными IP маршрутизаторами. iSCSI позволяет строить гео-распределённые кластеры.

Решение СХД на базе массивов HP и коммутаторов CISCO, объём данных свыше 1 ПБ (1 петабайт).

Основными производителями устройств, применяемых для построения СХД, являются HP, IBM, EMC, Dell, Sun Microsystems и NetApp. Cisco Systems предлагает широкий выбор Fibre Channel коммутаторов, обеспечивающих связь между устройствами СХД.

Компания ЛанКей имеет большой опыт построения систем хранения данных на базе оборудования перечисленных выше производителей. При построении СХД мы сотрудничаем с производителями и строим высокопроизводительные и высоконадёжные системы хранения информации. Наши инженеры спроектируют и внедрят СХД, соответствующую специфике вашего бизнеса, а также разработают систему управления вашими данными.