Сферы применения сенсорных сетей. Беспроводные сенсорные сети. Программное обеспечение беспроводной сенсорной сети

Максим Сергиевский

Новейшие технологии беспроводной связи и прогресс в области производства микросхем позволили в течение последних нескольких лет перейти к практической разработке и внедрению нового класса распределенных коммуникационных систем - сенсорных сетей.

Беспроводные сенсорные сети (wireless sensor networks) состоят из миниатюрных вычислительно-коммуникационных устройств - мотов (от англ. motes - пылинки), или сенсоров. Мот представляет собой плату размером обычно не более одного кубического дюйма. На плате размещаются процессор, память - флэш и оперативная, цифроаналоговые и аналого-цифровые преобразователи, радиочастотный приемопередатчик, источник питания и датчики. Датчики могут быть самыми разнообразными; они подключаются через цифровые и аналоговые коннекторы. Чаще других используются датчики температуры, давления, влажности, освещенности, вибрации, реже - магнитоэлектрические, химические (например, измеряющие содержание CO, CO2), звуковые и некоторые другие. Набор применяемых датчиков зависит от функций, выполняемых беспроводными сенсорными сетями. Питание мота осуществляется от небольшой батареи. Моты используются только для сбора, первичной обработки и передачи сенсорных данных. Внешний вид мотов, выпускаемых различными производителями, приведен на рис. 1.

Основная функциональная обработка данных, собираемых мотами, осуществляется на узле, или шлюзе, который представляет собой достаточно мощный компьютер. Но для того, чтобы обработать данные, их нужно сначала получить. Для этой цели узел обязательно оснащается антенной. Но в любом случае доступными для узла оказываются только моты, находящиеся достаточно близко от него; другими словами, узел не получает информацию непосредственно от каждого мота. Проблема получения сенсорной информации, собираемой мотами, решается следующим образом. Моты могут обмениваться между собой информацией с помощью приемопередатчиков, работающих в радиодиапазоне. Это, во-первых, сенсорная информация, считываемая с датчиков, а во-вторых, информация о состоянии устройств и результатах процесса передачи данных. Информация передается от одних мотов другим по цепочке, и в итоге ближайшие к шлюзу моты сбрасывают ему всю аккумулированную информацию. Если часть мотов выходит из строя, работа сенсорной сети после реконфигурации должна продолжаться. Но в этом случае, естественно, уменьшается число источников информации.

Для выполнения функций на каждый мот устанавливается специализированная операционная система. В настоящее время в большинстве беспроводных сенсорных сетей используется TinyOS - ОС, разработанная в Университете Беркли. TinyOS относится к программному обеспечению с открытым кодом; оно доступно по адресу: www.tinyos.net. TinyOS - это управляемая событиями операционная система реального времени, рассчитанная на работу в условиях ограниченных вычислительных ресурсов. Эта ОС позволяет мотам автоматически устанавливать связи с соседями и формировать сенсорную сеть заданной топологии. Последний релиз TinyOS 2.0 появился в 2006 году.

Важнейшим фактором при работе беспроводных сенсорных сетей является ограниченная емкость батарей, устанавливаемых на моты. Следует учитывать, что заменить батареи чаще всего невозможно. В связи с этим необходимо выполнять на мотах только простейшую первичную обработку, ориентированную на уменьшение объема передаваемой информации, и, что самое главное, минимизировать число циклов приема и передачи данных. Для решения этой задачи разработаны специальные коммуникационные протоколы, наиболее известными из которых являются протоколы альянса ZigBee. Данный альянс (сайт www.zigbee.org) был создан в 2002 году именно для координации работ в области беспроводных сенсорных сетей. В него вошли крупнейшие разработчики аппаратных и программных средств: Philips, Ember, Samsung, IBM, Motorola, Freescale Semiconductor, Texas Instruments, NEC, LG, OKI и многие другие (всего более 200 членов). Корпорация Intel в альянс не входит, хотя и поддерживает его деятельность.

В принципе, для выработки стандарта, в том числе стека протоколов для беспроводных сенсорных сетей, ZigBee использовал разработанный ранее стандарт IEEE 802.15.4, который описывает физический уровень и уровень доступа к среде для беспроводных сетей передачи данных на небольшие расстояния (до 75 м) с низким энергопотреблением, но с высокой степенью надежности. Некоторые характеристики радиопередачи данных для стандарта IEEE 802.15.4 приведены в табл. 1.

Таблица 1. Характеристики радиопередачи данных для IEEE 802.15.4

Полоса частот, МГц

Нужна ли лицензия

Географический регион

Скорость передачи данных, Кбит/с

Число каналов

На данный момент ZigBee разработал единственный в этой области стандарт, который подкреплен наличием производства полностью совместимых аппаратных и программных продуктов. Протоколы ZigBee позволяют устройствам находиться в спящем режиме бо льшую часть времени, что значительно продлевает срок службы батареи.

Очевидно, что разработать схемы обмена данными между сотнями и даже тысячами мотов не так-то просто. Наряду с прочим необходимо учесть тот факт, что сенсорные сети работают в нелицензированных частотных диапазонах, поэтому в ряде случаев могут возникать помехи, создаваемые посторонними источниками радиосигналов. Желательно также избегать повторной передачи одних и тех же данных, а кроме того, учитывать, что из-за недостаточной энергоемкости и внешних воздействий моты будут выходить из строя навсегда или на какое-то время. Во всех таких случаях схемы обмена данными должны модифицироваться. Поскольку одной из важнейших функций TinyOS является автоматический выбор схемы организации сети и маршрутов передачи данных, беспроводные сенсорные сети по существу являются самонастраиваемыми.

Чаще всего мот должен иметь возможность самостоятельно определить свое местоположение, по крайней мере по отношению к тому другому моту, которому он будет передавать данные. То есть сначала происходит идентификация всех мотов, а затем уже формируется схема маршрутизации. Вообще все моты - устройства стандарта ZigBee - по уровню сложности разбиваются на три класса. Высший из них - координатор - управляет работой сети, хранит данные о ее топологии и служит шлюзом для передачи данных, собираемых всей беспроводной сенсорной сетью, для дальнейшей обработки. В сенсорных сетях обычно используется один координатор. Средний по сложности мот является маршрутизатором, то есть может принимать и передавать данные, а также определять направления передачи. И наконец, самый простой мот может лишь передавать данные ближайшему маршрутизатору. Таким образом, получается, что стандарт ZigBee поддерживает сеть с кластерной архитектурой (рис. 2). Кластер образуют маршрутизатор и простейшие моты, у которых он запрашивает сенсорные данные. Маршрутизаторы кластеров ретранслируют данные друг другу, и в конечном счете данные передаются координатору. Координатор обычно имеет связь с IP-сетью, куда и направляются данные для окончательной обработки.

В России тоже проводятся разработки, связанные с созданием беспроводных сенсорных сетей. Так, компания «Высокотехнологичные системы» предлагает свою аппаратно-программную платформу MeshLogic для построения беспроводных сенсорных сетей (сайт www.meshlogic.ru). Основным отличием этой платформы от ZigBee является ориентация на построение одноранговых ячеистых сетей (рис. 3). В таких сетях функциональные возможности каждого мота одинаковы. Возможность самоорганизации и самовосстановления сетей ячеистой топологии позволяет в случае выхода части мотов из строя спонтанно формировать новую структуру сети. Правда, в любом случае необходим центральный функциональный узел, принимающий и обрабатывающий все данные, или шлюз для передачи данных на обработку узлу. Спонтанно создаваемые сети часто называют латинским термином Ad Hoc, что означает «для конкретного случая».

В сетях MeshLogic каждый мот может выполнять ретрансляцию пакетов, то есть по своим функциям напоминает маршрутизатор ZigBee. Сети MeshLogic являются в полной мере самоорганизуемыми: никакого узла-координатора не предусмотрено. В качестве радиочастотных приемопередатчиков в MeshLogic могут использоваться различные устройства, в частности Cypress WirelessUSB, которые так же, как и устройства стандарта ZigBee, работают в диапазоне частот 2,4... 2,4835 ГГц. Следует отметить, что для платформы MeshLogic существуют только нижние уровни стека протоколов. Считается, что верхние уровни, в частности сетевой и прикладной, будут создаваться под конкретные приложения. Конфигурации и основные параметры двух мотов MeshLogic и одного мота стандарта ZigBee приведены в табл. 2.

Таблица 2. Основные характеристики мотов различных производителей

Параметры

Микроконтроллер

Процессор

Texas Instruments MSP430

Тактовая частота

От 32,768 кГц до 8 МГц

Оперативная память

Flash-память

Приемопередатчик

Cypress WirelessUSBTM LP

Диапазон частот

2400-2483,5 МГц

2400-2483,5 МГц

Скорость передачи данных

От 15,625 до 250 Кбит/с

Выходная мощность

От –24 до 0 дБм

От –35 до 4 дБм

От –28 до 3 дБм

Чувствительность

1 или 2 чипа

Внешние интерфейсы

12-разрядный, 7 каналов

10-разрядный, 3 канала

Цифровые интерфейсы

I2C/SPI/UART/USB

I2C/SPI/UART/IRQ/JTAG

Другие параметры

Напряжение питания

От 0,9 до 6,5 В

От 1,8 до 3,6 В

Температурный диапазон

От –40 до 85 °C

От 0 до 70 °C

От 0 до 85 °C

Отметим, что интегрированных сенсорных датчиков на этих платах нет.

Укажем, что в первую очередь отличает беспроводные сенсорные сети от обычных вычислительных (проводных и беспроводных) сетей:

  • полное отсутствие каких бы то ни было кабелей - электрических, коммуникационных и т.д.;
  • возможность компактного размещения или даже интеграции мотов в объекты окружающей среды;
  • надежность как отдельных элементов, так и, что более важно, всей системы в целом; в ряде случаев сеть может функционировать при исправности только 10-20% сенсоров (мотов);
  • отсутствие необходимости в персонале для монтажа и технического обслуживания.

Сенсорные сети могут быть использованы во многих прикладных областях. Беспроводные сенсорные сети - это новая перспективная технология, и все связанные с ней проекты в основном находятся в стадии разработки. Укажем основные области применения данной технологии:

  • системы обороны и обеспечение безопасности;
  • контроль окружающей среды;
  • мониторинг промышленного оборудования;
  • охранные системы;
  • мониторинг состояния сельскохозяйственных угодий;
  • управление энергоснабжением;
  • контроль систем вентиляции, кондиционирования и освещения;
  • пожарная сигнализация;
  • складской учет;
  • слежение за транспортировкой грузов;
  • мониторинг физиологического состояния человека;
  • контроль персонала.

Из достаточно большого числа примеров использования беспроводных сенсорных сетей выделим два. Наиболее известным является, пожалуй, развертывание сети на борту нефтяного танкера компании ВР. Там с помощью сети, построенной на основе оборудования Intel, осуществлялся мониторинг состояния судна с целью организации его профилактического обслуживания. Компания BP проанализировала, может ли сенсорная сеть работать на борту судна в условиях экстремальных температур, высокой вибрации и значительного уровня радиочастотных помех, имеющихся в некоторых помещениях судна. Эксперимент прошел успешно, несколько раз автоматически осуществлялись реконфигурация и восстановление работоспособности сети.

Примером еще одного реализованного пилотного проекта является развертывание сенсорной сети на базе военно-воздушных сил США во Флориде. Система продемонстрировала хорошие возможности по распознаванию различных металлических объектов, в том числе движущихся. Применение сенсорной сети позволило обнаруживать проникновение людей и автомобилей в контролируемую зону и отслеживать их перемещения. Для решения этих задач использовались моты, оснащенные магнитоэлектрическими и температурными датчиками. В настоящее время масштабы проекта расширяются, и беспроводная сенсорная сеть устанавливается уже на полигоне размером 10 000x500 м. Соответствующее прикладное программное обеспечение разрабатывается несколькими американскими университетами.

Максим Сергиевский

Новейшие технологии беспроводной связи и прогресс в области производства микросхем позволили в течение последних нескольких лет перейти к практической разработке и внедрению нового класса распределенных коммуникационных систем - сенсорных сетей.

Беспроводные сенсорные сети (wireless sensor networks) состоят из миниатюрных вычислительно-коммуникационных устройств - мотов (от англ. motes - пылинки), или сенсоров. Мот представляет собой плату размером обычно не более одного кубического дюйма. На плате размещаются процессор, память - флэш и оперативная, цифроаналоговые и аналого-цифровые преобразователи, радиочастотный приемопередатчик, источник питания и датчики. Датчики могут быть самыми разнообразными; они подключаются через цифровые и аналоговые коннекторы. Чаще других используются датчики температуры, давления, влажности, освещенности, вибрации, реже - магнитоэлектрические, химические (например, измеряющие содержание CO, CO2), звуковые и некоторые другие. Набор применяемых датчиков зависит от функций, выполняемых беспроводными сенсорными сетями. Питание мота осуществляется от небольшой батареи. Моты используются только для сбора, первичной обработки и передачи сенсорных данных. Внешний вид мотов, выпускаемых различными производителями, приведен на рис. 1.

Основная функциональная обработка данных, собираемых мотами, осуществляется на узле, или шлюзе, который представляет собой достаточно мощный компьютер. Но для того, чтобы обработать данные, их нужно сначала получить. Для этой цели узел обязательно оснащается антенной. Но в любом случае доступными для узла оказываются только моты, находящиеся достаточно близко от него; другими словами, узел не получает информацию непосредственно от каждого мота. Проблема получения сенсорной информации, собираемой мотами, решается следующим образом. Моты могут обмениваться между собой информацией с помощью приемопередатчиков, работающих в радиодиапазоне. Это, во-первых, сенсорная информация, считываемая с датчиков, а во-вторых, информация о состоянии устройств и результатах процесса передачи данных. Информация передается от одних мотов другим по цепочке, и в итоге ближайшие к шлюзу моты сбрасывают ему всю аккумулированную информацию. Если часть мотов выходит из строя, работа сенсорной сети после реконфигурации должна продолжаться. Но в этом случае, естественно, уменьшается число источников информации.

Для выполнения функций на каждый мот устанавливается специализированная операционная система. В настоящее время в большинстве беспроводных сенсорных сетей используется TinyOS - ОС, разработанная в Университете Беркли. TinyOS относится к программному обеспечению с открытым кодом; оно доступно по адресу: www.tinyos.net. TinyOS - это управляемая событиями операционная система реального времени, рассчитанная на работу в условиях ограниченных вычислительных ресурсов. Эта ОС позволяет мотам автоматически устанавливать связи с соседями и формировать сенсорную сеть заданной топологии. Последний релиз TinyOS 2.0 появился в 2006 году.

Важнейшим фактором при работе беспроводных сенсорных сетей является ограниченная емкость батарей, устанавливаемых на моты. Следует учитывать, что заменить батареи чаще всего невозможно. В связи с этим необходимо выполнять на мотах только простейшую первичную обработку, ориентированную на уменьшение объема передаваемой информации, и, что самое главное, минимизировать число циклов приема и передачи данных. Для решения этой задачи разработаны специальные коммуникационные протоколы, наиболее известными из которых являются протоколы альянса ZigBee. Данный альянс (сайт www.zigbee.org) был создан в 2002 году именно для координации работ в области беспроводных сенсорных сетей. В него вошли крупнейшие разработчики аппаратных и программных средств: Philips, Ember, Samsung, IBM, Motorola, Freescale Semiconductor, Texas Instruments, NEC, LG, OKI и многие другие (всего более 200 членов). Корпорация Intel в альянс не входит, хотя и поддерживает его деятельность.

В принципе, для выработки стандарта, в том числе стека протоколов для беспроводных сенсорных сетей, ZigBee использовал разработанный ранее стандарт IEEE 802.15.4, который описывает физический уровень и уровень доступа к среде для беспроводных сетей передачи данных на небольшие расстояния (до 75 м) с низким энергопотреблением, но с высокой степенью надежности. Некоторые характеристики радиопередачи данных для стандарта IEEE 802.15.4 приведены в табл. 1.

Таблица 1. Характеристики радиопередачи данных для IEEE 802.15.4

Полоса частот, МГц

Нужна ли лицензия

Географический регион

Скорость передачи данных, Кбит/с

Число каналов

На данный момент ZigBee разработал единственный в этой области стандарт, который подкреплен наличием производства полностью совместимых аппаратных и программных продуктов. Протоколы ZigBee позволяют устройствам находиться в спящем режиме бо льшую часть времени, что значительно продлевает срок службы батареи.

Очевидно, что разработать схемы обмена данными между сотнями и даже тысячами мотов не так-то просто. Наряду с прочим необходимо учесть тот факт, что сенсорные сети работают в нелицензированных частотных диапазонах, поэтому в ряде случаев могут возникать помехи, создаваемые посторонними источниками радиосигналов. Желательно также избегать повторной передачи одних и тех же данных, а кроме того, учитывать, что из-за недостаточной энергоемкости и внешних воздействий моты будут выходить из строя навсегда или на какое-то время. Во всех таких случаях схемы обмена данными должны модифицироваться. Поскольку одной из важнейших функций TinyOS является автоматический выбор схемы организации сети и маршрутов передачи данных, беспроводные сенсорные сети по существу являются самонастраиваемыми.

Чаще всего мот должен иметь возможность самостоятельно определить свое местоположение, по крайней мере по отношению к тому другому моту, которому он будет передавать данные. То есть сначала происходит идентификация всех мотов, а затем уже формируется схема маршрутизации. Вообще все моты - устройства стандарта ZigBee - по уровню сложности разбиваются на три класса. Высший из них - координатор - управляет работой сети, хранит данные о ее топологии и служит шлюзом для передачи данных, собираемых всей беспроводной сенсорной сетью, для дальнейшей обработки. В сенсорных сетях обычно используется один координатор. Средний по сложности мот является маршрутизатором, то есть может принимать и передавать данные, а также определять направления передачи. И наконец, самый простой мот может лишь передавать данные ближайшему маршрутизатору. Таким образом, получается, что стандарт ZigBee поддерживает сеть с кластерной архитектурой (рис. 2). Кластер образуют маршрутизатор и простейшие моты, у которых он запрашивает сенсорные данные. Маршрутизаторы кластеров ретранслируют данные друг другу, и в конечном счете данные передаются координатору. Координатор обычно имеет связь с IP-сетью, куда и направляются данные для окончательной обработки.

В России тоже проводятся разработки, связанные с созданием беспроводных сенсорных сетей. Так, компания «Высокотехнологичные системы» предлагает свою аппаратно-программную платформу MeshLogic для построения беспроводных сенсорных сетей (сайт www.meshlogic.ru). Основным отличием этой платформы от ZigBee является ориентация на построение одноранговых ячеистых сетей (рис. 3). В таких сетях функциональные возможности каждого мота одинаковы. Возможность самоорганизации и самовосстановления сетей ячеистой топологии позволяет в случае выхода части мотов из строя спонтанно формировать новую структуру сети. Правда, в любом случае необходим центральный функциональный узел, принимающий и обрабатывающий все данные, или шлюз для передачи данных на обработку узлу. Спонтанно создаваемые сети часто называют латинским термином Ad Hoc, что означает «для конкретного случая».

В сетях MeshLogic каждый мот может выполнять ретрансляцию пакетов, то есть по своим функциям напоминает маршрутизатор ZigBee. Сети MeshLogic являются в полной мере самоорганизуемыми: никакого узла-координатора не предусмотрено. В качестве радиочастотных приемопередатчиков в MeshLogic могут использоваться различные устройства, в частности Cypress WirelessUSB, которые так же, как и устройства стандарта ZigBee, работают в диапазоне частот 2,4... 2,4835 ГГц. Следует отметить, что для платформы MeshLogic существуют только нижние уровни стека протоколов. Считается, что верхние уровни, в частности сетевой и прикладной, будут создаваться под конкретные приложения. Конфигурации и основные параметры двух мотов MeshLogic и одного мота стандарта ZigBee приведены в табл. 2.

Таблица 2. Основные характеристики мотов различных производителей

Параметры

Микроконтроллер

Процессор

Texas Instruments MSP430

Тактовая частота

От 32,768 кГц до 8 МГц

Оперативная память

Flash-память

Приемопередатчик

Cypress WirelessUSBTM LP

Диапазон частот

2400-2483,5 МГц

2400-2483,5 МГц

Скорость передачи данных

От 15,625 до 250 Кбит/с

Выходная мощность

От –24 до 0 дБм

От –35 до 4 дБм

От –28 до 3 дБм

Чувствительность

1 или 2 чипа

Внешние интерфейсы

12-разрядный, 7 каналов

10-разрядный, 3 канала

Цифровые интерфейсы

I2C/SPI/UART/USB

I2C/SPI/UART/IRQ/JTAG

Другие параметры

Напряжение питания

От 0,9 до 6,5 В

От 1,8 до 3,6 В

Температурный диапазон

От –40 до 85 °C

От 0 до 70 °C

От 0 до 85 °C

Отметим, что интегрированных сенсорных датчиков на этих платах нет.

Укажем, что в первую очередь отличает беспроводные сенсорные сети от обычных вычислительных (проводных и беспроводных) сетей:

  • полное отсутствие каких бы то ни было кабелей - электрических, коммуникационных и т.д.;
  • возможность компактного размещения или даже интеграции мотов в объекты окружающей среды;
  • надежность как отдельных элементов, так и, что более важно, всей системы в целом; в ряде случаев сеть может функционировать при исправности только 10-20% сенсоров (мотов);
  • отсутствие необходимости в персонале для монтажа и технического обслуживания.

Сенсорные сети могут быть использованы во многих прикладных областях. Беспроводные сенсорные сети - это новая перспективная технология, и все связанные с ней проекты в основном находятся в стадии разработки. Укажем основные области применения данной технологии:

  • системы обороны и обеспечение безопасности;
  • контроль окружающей среды;
  • мониторинг промышленного оборудования;
  • охранные системы;
  • мониторинг состояния сельскохозяйственных угодий;
  • управление энергоснабжением;
  • контроль систем вентиляции, кондиционирования и освещения;
  • пожарная сигнализация;
  • складской учет;
  • слежение за транспортировкой грузов;
  • мониторинг физиологического состояния человека;
  • контроль персонала.

Из достаточно большого числа примеров использования беспроводных сенсорных сетей выделим два. Наиболее известным является, пожалуй, развертывание сети на борту нефтяного танкера компании ВР. Там с помощью сети, построенной на основе оборудования Intel, осуществлялся мониторинг состояния судна с целью организации его профилактического обслуживания. Компания BP проанализировала, может ли сенсорная сеть работать на борту судна в условиях экстремальных температур, высокой вибрации и значительного уровня радиочастотных помех, имеющихся в некоторых помещениях судна. Эксперимент прошел успешно, несколько раз автоматически осуществлялись реконфигурация и восстановление работоспособности сети.

Примером еще одного реализованного пилотного проекта является развертывание сенсорной сети на базе военно-воздушных сил США во Флориде. Система продемонстрировала хорошие возможности по распознаванию различных металлических объектов, в том числе движущихся. Применение сенсорной сети позволило обнаруживать проникновение людей и автомобилей в контролируемую зону и отслеживать их перемещения. Для решения этих задач использовались моты, оснащенные магнитоэлектрическими и температурными датчиками. В настоящее время масштабы проекта расширяются, и беспроводная сенсорная сеть устанавливается уже на полигоне размером 10 000x500 м. Соответствующее прикладное программное обеспечение разрабатывается несколькими американскими университетами.

Корпоративная версия технологии «Интернета вещей» (англ. Internet of Things, IoT) сегодня активно используется в промышленности. В рамках корпоративного «Интернета вещей» (англ. Enterprise Internet of Things, EIoT) применяются беспроводные сенсорные сети и средства управления, что открывает предприятиям новые возможности управления машинами и оборудованием. Беспроводные датчики, работающие от небольшого аккумулятора без подключения к проводной сети питания, в производственных условиях могут находиться в местах, совершенно недоступных для элементов управления предыдущих поколений.

EIoT повысил надежность, безопасность и комплексную совместимость систем и оборудования, что позволило удовлетворить самые жесткие требования к внедрению беспроводных технологий этого направления не только в промышленности, но и в сфере здравоохранения, финансовых услуг и т. д. EIoT учитывает потребности этих областей благодаря тому, что технические характеристики и элементы конструктивного исполнения устройств технологии этого нового направления намного превосходят аналогичные технологии IoT традиционных устройств, предназначенные для менее критических потребительских или коммерческих приложений.

Проблемы EIoT

Датчики и элементы управления с поддержкой EIoT могут работать практически в любом месте индустриальной среды, но до сих пор это скорее зависело от удачи, поскольку не каждое промышленное оборудование идеально подходит для использования в беспроводных сетях. Это связано с тем, что в развертывании IoT имеются два взаимосвязанных, но, на первый взгляд, противоречивых элемента:

  1. Непосредственно сама беспроводная сеть устройств, которая устанавливается с использованием датчиков и элементов управления, связанных с технологией малого радиуса действия с низким уровнем потребления мощности.
  2. Сеть IoT-датчиков, взаимодействующая с другим оборудованием, контроллерами и частями сети уже на большем расстоянии.

Рис. 1. Приложения, расположенные вдали от городских центров и традиционных телекоммуникационных услуг, для организации глобальной сети могут воспользоваться таким энергоэффективным коммуникационным протоколом, как LoRa

Именно невозможность надежной связи на больших расстояниях зачастую является наиболее существенным препятствием в условиях индустриальной среды. Эта проблема имеет простую причину: телекоммуникационная связь, которая осуществляется по проводным кабельным линиям или путем использования передачи сигналов через вышки сотовой связи, не всегда доступна в местах расположения промышленного оборудования. Кроме того, стоимость использования сервисов сотовой связи только для доставки нескольких пакетов данных от датчиков за один сеанс связи не имеет большого смысла как с экономической точки зрения, так и из чисто технических соображений. Кроме того, довольно часто возникает проблема энергоснабжения датчиков и устройств связи, которое весьма затруднительно организовать в отдаленных местах, где оборудование или инфраструктура не запитывается непосредственно от промышленной сети.

Несмотря на широкое покрытие сотовой связью населенных пунктов, в некоторых местах нет надежного сервиса для организации беспроводной связи. Это распространенная проблема для сельских районов и удаленных мест размещения промышленного оборудования, например отдельно расположенного оборудования нефтегазовой промышленности или трубо­проводного транспорта, системы водоснабжения и удаления сточных вод (рис. 1) и др. Такие узлы также зачастую находятся далеко от ближайшего технического обслуживающего персонала, который проверяет надлежащее функционирование приборов. Иногда инженеру требуется целый рабочий день, а то и несколько, для того чтобы добраться до оборудования и осмотреть его. Нередко затруднительно и просто найти специалистов, желающих работать в таких отдаленных районах. Поскольку, ввиду ограниченного покрытия связью, датчики и элементы управления с поддержкой EIoT достаточно редки в удаленных объектах, то здесь на помощь приходят энергоэффективные сети дальнего радиуса действия (англ. low-power wide area network, LPWAN).

BLE и LPWAN

Наиболее широко используемой беспроводной технологией короткого радиуса действия в системах EIoT является технология Bluetooth с низким энергопотреблением - BLE (англ. Bluetooth low energy, также известная как Bluetooth Smart). Основная причина высокой популярности BLE для EIoT - его энергоэффективность, которая позволяет датчикам и элементам управления работать длительное время с очень малым расходом энергии батарей. BLE управляет циклами сна, дежурным режимом и активными циклами. BLE также широко используется из-за мощности его радиочастотного сигнала, который позволяет этой технологии эффективно работать даже в сложных средах с повышенным уровнем высокочастотных шумов, поступающих цифровых сигналов от компьютерного оборудования и даже при наличии физических препятствий для распространения радиоволн. А ведь, как известно, все эти факторы являются привычными для индустриальной среды.

В проектах по реализации EIoT именно технология BLE является базовой для организации связи ближнего радиуса действия. Причем она может использоваться как на уже эксплуатируемых, так и на еще только проектируемых комплексах промышленного оборудования. Однако такой сети устройств с поддержкой BLE нужен способ получения инструкций и ретрансляции данных на более дальние расстояния. Опора на традиционную телекоммуникационную инфраструктуру, которая позволяет использовать двунаправленную связь по Wi-Fi или сигналы сотовой связи, невозможна из-за заслона, ограничивающего возможности применения этих сенсорных и управляющих сетей. Объединив BLE со сверхдальностью и энергоэффективностью технологии LoRa компании смогли развернуть EIoT в местах, где телекоммуникационная инфраструктура и инфраструктура питания недоступны, а это, в свою очередь, расширило географию реализации технологии «Интернета вещей».

Рис. 2. Датчики сначала подключаются к клиенту LoRa и затем – через шлюз LoRa

Протоколом глобальной сети LoRa часто является LPWAN, поскольку он обеспечивает безопасную двунаправленную передачу данных и связь с сетями IoT на больших расстояниях в течение многих лет без замены батарей. При использовании технологии LoRa открывается возможность отправлять и принимать сигналы на расстоянии примерно до 16 км, а установленные при необходимости репитеры (ретрансляторы) могут увеличить это расстояние уже до сотен километров. На рис. 2 показана схема работы LoRa. Для приложений IoT LoRa имеет множество преимуществ именно благодаря ее экономическим характеристикам и возможностям:

  • Поскольку LoRa, как и BLE, является технологией сверхнизкого энергопотребления, она способна работать в сетях устройств IoT с батарейным питанием и может обеспечить длительную работу от батареи, не требуя при этом частого технического обслуживания.
  • Узлы на базе технологии LoRa недорогие и позволяют компаниям сократить расходы на передачу данных по системам сотовой связи, а также отказаться от установки оптоволоконных или медных кабелей. Это устраняет основной финансовый барьер для организации связи удаленно расположенных датчиков и оборудования.
  • Технология LoRa хорошо работает и с сетевыми устройствами, размещенными внутри помещений, в том числе в сложных индустриальных средах.
  • LoRa обладает широкой масштабируемостью и совместимостью за счет поддержки миллиона узлов, ее можно соединить с государственными и частными сетями передачи данных и системами двунаправленной связи.

Итак, в то время как другие технологии LPWAN смогут лишь в отдаленной перспективе решить проблему дальности связи при реализации решений «Интернета вещей», технология LoRa предлагает для этого двунаправленную связь, защиту от помех и высокое информационное наполнение.

У LoRa есть и существенный недостаток - невысокая пропускная способность. Это делает ее непригодной для приложений, требующих передачи потоковых данных. Однако это ограничение не мешает использовать ее для широкого диапазона IoT-приложений, где время от времени передаются лишь небольшие пакеты данных.

Взаимодействие

Рис. 3. Модуль RM1xx от компании Laird, который включает в себя коммуникационные возможности для протоколов беспроводной сети LoRa и Bluetooth

Потенциал LoRa увеличивается вдвое, когда он сочетается с технологией, подобной BLE. Действуя вместе, они предоставляют набор беспроводных возможностей сверхнизкого энергопотребления для связи малого и дальнего радиуса действия, что расширяет возможности сетей EIoT. Так, например, центральная часть городских районов может быть покрыта всего лишь несколькими шлюзами LoRaWAN, являющимися основой для сетей датчиков с технологией BLE, которые теперь не зависят от традиционных телекоммуникационных инфраструктур. Таким образом, симбиоз LoRa и BLE устраняет ряд препятствий для расширения IoT как в мегаполисах, так и в малых городах, имеющих заслоны на пути широкого внедрения «Интернета вещей». Однако наибольший выигрыш от объединения LoRA и BLE получают беспроводные датчики, средства управления и другое оборудование, которые теперь могут устанавливаться без каких-либо ограничений буквально везде (рис. 3). В это особая заслуга именно BLE. BLE также позволяет этим устройствам совместно работать в интегрированной сети малого радиуса действия, управляемой, например, со смартфонов или планшетов, которые в данном случае используются в качестве удаленных беспроводных дисплеев. В этой связке технология LoRa, основываясь на мобильных возможностях BLE, выступает в качестве своеобразной радиорелейной станции, которая может отправлять и получать данные на больших расстояниях. Причем эти расстояния могут быть увеличены простыми шлюзами для передачи сигналов.

Существует уже немало наглядных примеров, демонстрирующих, как сопряжение LoRa и BLE позволяет сетям EIoT выйти на абсолютно иной технический уровень и усилить свою экспансию.

Практически все сферы жизни в 21 веке зависят от информационно-коммуникационных технологий (ИКТ). Данными обмениваются не только люди, но и всевозможные интеллектуальные системы, мобильные телефоны, носимые устройства, банкоматы, датчики. К «Интернету вещей» уже подключены по меньшей мере 5 млрд устройств. Функционирование любых крупных комплексов — предприятий промышленности, энергетики, сельского хозяйства, торговых центров, музеев, офисов, жилых зданий — сопряжено с постоянным контролем ситуации на их территории. Чувствительные сенсоры в режиме реального времени следят за исправностью оборудования, организацией взаимодействия приборов между собой, предупреждают о необходимости их замены или о чрезвычайных ситуациях. При стремительно растущих объемах данных необходим простой и удобный способ обмена ими между устройствами и центрами обработки информации.

Версия для печати:

Беспров одные сенсорные сети (БСС, Wireless Sensor Networks), состоящие из беспроводных сенсоров и управляющих устройств и способные к самоорганизации с помощью интеллектуальных алгоритмов, демонстрируют масштабные перспективы использования для контроля здоровья человека, состояния окружающей среды, функционирования производственных и транспортных систем, учета различных ресурсов и др. В настоящем выпуске информационного бюллетеня представлены технологические тренды в области БСС, связанные с обеспечением постоянной работы беспроводных сенсоров и их применением в двух областях современной экономики - передовом производстве (advanced manufacturing) и «умной» энергетике (smart grid).


Самозарядные сенсорные устройства

Для развития беспроводных сенсорных сетей важно решить проблему их энергопитания. Перспективным трендом является создание долговечных автономных устройств с минимальным потреблением энергии - преобразованной из внешних источников.

Беспроводные сенсорные устройства могут, например, питаться от энергии радиосигнала, отправленного на них от какого‑либо передатчика (подобно устройствам радиочастотной идентификации (RFID) или бесконтактным смарт-картам). Эта энергия используется устройством как для подзарядки сенсора, так и для формирования ответного сигнала с информацией о текущем состоянии контролируемого объекта.

Другой способ - пассивное преобразование энергии из внешней среды (energy harvesting): солнечной (снаружи помещения при достаточно ясной погоде), тепловой, энергии механических вибраций (от работающих рядом приборов - сборочных аппаратов, конвейеров и т. п.), энергии вибраций самого сенсора (в случае с носимыми устройствами), фоновых радиоизлучений от окружающих электроприборов (в том числе Wi-Fi).

Реализация передового производства на базе беспроводных сенсорных сетей

Нерациональное использование ресурсов и производственных мощностей, выработка большого количества загрязняющих окружающую среду отходов, отсутствие постоянного контроля состояния объектов на предприятиях - эти и другие проблемы современной промышленности стимулируют переход к модели передового производства (advanced manufacturing). Для него характерны использование новых материалов и экологически безопасных технологий (green technologies), а также повсеместное применение ИКТ и интеллектуальных систем, в частности робототехники и беспроводных сенсорных сетей.

Индустриальные беспроводные сенсорные сети (ИБСС, Industrial Wireless Sensor Networks) - важнейший фактор реализации передового производства. Для управления и контроля состояния объектов на предприятии (оборудования, конвейеров, сборочных аппаратов, реакторов) используется набор взаимосвязанных беспроводных сенсоров и информационных систем, которые обрабатывают данные с сенсоров и взаимодействуют с контролируемыми объектами с помощью управляющих устройств. Такая автоматизированная система реагирует на любые изменения показателей на предприятии, оповещает персонал об авариях и проблемных ситуациях, анализирует эффективность использования оборудования, оценивает уровень загрязнения окружающей среды и объемы производимых отходов.

«Умные» энергосети

Глобальная проблема нерационального использования электроэнергии особенно актуальна для России. Большие затраты на генерацию электроэнергии увеличивают себестоимость производства продукции, что ложится двойным бременем на конечного потребителя. Для повышения эффективности и надежности энергосистем многие страны переходят к концепции «умных» энергосетей (smart grid).

Такая сеть управляет в режиме реального времени всеми подсоединенными к ней генерирующими источниками, магистральными и распределительными сетями и объектами, потребляющими электроэнергию. Для управления «умной» энергосетью используются беспроводные сенсорные сети, которые контролируют объемы энергопроизводства и энергопотребления на разных ее участках. С помощью информационных систем рассчитывается оптимальное распределение энергии в сети, строятся прогнозы на разные сезоны и периоды дня, синхронизируются выработка энергии и ее доставка, контролируется безопасность линий электропередач. Для повышения эффективности энергосети ее некритические элементы на время пониженной активности выключаются.

Мониторинг глобальных технологических трендов проводится Институтом статистических исследований и экономики знаний Высшей школы экономики () в рамках Программы фундаментальных исследований НИУ ВШЭ.

При подготовке трендлеттера использовались следующие источники: Прогноз научно-технологического развития РФ до 2030 года (prognoz2030.hse.ru), материалы научного журнала «Форсайт» (foresight-journal.hse.ru), данные Web of Science , Orbit , idc.com, marketsandmarkets.com, wintergreenresearch.com, greentechmedia.com, greenpatrol.ru и др.

История и сфера использования

Одним из первых прототипов сенсорной сети можно считать систему СОСУС , предназначенную для обнаружения и идентификации подводных лодок. Технологии беспроводных сенсорных сетей стали активно развиваться сравнительно недавно - в середине 90-х годов. Однако лишь в начале XXI века развитие микроэлектроники позволило производить для таких устройств достаточно дешевую элементную базу. Современные беспроводные сети в основном базируются на стандарте ZigBee . Немалое количество отраслей и сегментов рынка (производство, различные виды транспорта, обеспечение жизнедеятельности, охрана), готовых для внедрения сенсорных сетей, и это количество непрерывно увеличивается . Тенденция обусловлена усложнением технологических процессов, развитием производства, расширяющимися потребностями частных лиц в сегментах безопасности, контроля ресурсов и использования товаро-материальных ценностей. С развитием полупроводниковых технологий появляются новые практические задачи и теоретические проблемы, связанные с применениями сенсорных сетей в промышленности, жилищно-коммунальном комплексе, домашних хозяйствах. Использование недорогих беспроводных сенсорных устройств контроля параметров открывает новые области для применения систем телеметрии и контроля, такие как :

  • Своевременное выявление возможных отказов исполнительных механизмов, по контролю таких параметров, как вибрация, температура, давление и т. п.;
  • Контроль доступа в режиме реального времени к удаленным системам объекта мониторинга;
  • Автоматизация инспекции и технического обслуживания промышленных активов;
  • Управление коммерческими активами;
  • Применение как компоненты в энерго- и ресурсосберегающих технологий;
  • Контроль эко-параметров окружающей среды.

Следует отметить, что несмотря на длительную историю сенсорных сетей , концепция построения сенсорной сети окончательно не оформилась и не выразилась в определенные программно-аппаратные (платформенные) решения. Реализация сенсорных сетей на текущем этапе во многом зависит от конкретных требований индустриальной задачи. Архитектура, программно-аппаратная реализация находится на этапе интенсивного формирования технологии, что обращает внимание разработчиков с целью поиска технологической ниши будущих производителей .

Технологии

Беспроводные сенсорные сети (WSN) состоят из миниатюрных вычислительных устройств - мотов, снабженных сенсорами (датчиками температуры, давления, освещенности, уровня вибрации, местоположения и т. п.) и приемопередатчиками сигналов, работающими в заданном радиодиапазоне. Гибкая архитектура, снижение затрат при монтаже выделяют беспроводные сети интеллектуальных датчиков среди других беспроводных и проводных интерфейсов передачи данных, особенно когда речь идет о большом количестве соединенных между собой устройств, сенсорная сеть позволяет подключать до 65000 устройств. Постоянное снижение стоимости беспроводных решений, повышение их эксплуатационных параметров позволяют постепенно переориентироваться с проводных решений в системах сбора телеметрических данных, средств дистанционной диагностики, обмена информации. «Сенсорная сеть» является сегодня устоявшимся термином (англ. Sensor Networks ), обозначающим распределенную, самоорганизующуюся, устойчивую к отказу отдельных элементов сеть из необслуживаемых и не требующих специальной установки устройств . Каждый узел сенсорной сети может содержать различные датчики для контроля внешней среды, микрокомпьютер и радиоприемопередатчик. Это позволяет устройству проводить измерения, самостоятельно проводить начальную обработку данных и поддерживать связь с внешней информационной системой.

Технология ретранслируемой ближней радиосвязи 802.15.4/ZigBee , известная как «Сенсорные сети» (англ. WSN - Wireless Sensor Network ), является одним из современных направлений развития самоорганизующихся отказоустойчивых распределенных систем наблюдения и управления ресурсами и процессами. Сегодня технология беспроводных сенсорных сетей, является единственной беспроводной технологией, с помощью которой можно решить задачи мониторинга и контроля, которые критичны к времени работы датчиков. Объединенные в беспроводную сенсорную сеть датчики образуют территориально-распределенную самоорганизующуюся систему сбора, обработки и передачи информации. Основной областью применения является контроль и мониторинг измеряемых параметров физических сред и объектов .

  • радиотракт;
  • процессорный модуль;
  • элемент питания;
  • различные датчики.

Типовой узел может быть представлен тремя типами устройств :

  • Сетевой координатор (FFD - Fully Function Device);
    • осуществляет глобальную координацию, организацию и установку параметров сети;
    • наиболее сложный из трех типов устройств, требует наибольший объем памяти и источник питания;
  • Устройство с полным набором функций (FFD - Fully Function Device);
    • поддержка 802.15.4;
    • дополнительная память и энергопотребление позволяет выполнять роль координатора сети;
    • поддержка всех типов топологий («точка-точка», «звезда», «дерево», «ячеистая сеть»);
    • способность выполнять роль координатора сети;
    • способность обращаться к другим устройствам в сети;
  • (RFD - Reduced Function Device);
    • поддерживает ограниченный набор функций 802.15.4;
    • поддержка топологий «точка-точка», «звезда»;
    • не выполняет функции координатора;
    • обращается к координатору сети и маршрутизатору;

Компании разработчики

На рынке представлены компании различных типов:

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Беспроводные сенсорные сети" в других словарях:

    - (другие названия: беспроводные ad hoc сети, беспроводные динамические сети) децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать… … Википедия

    Эту страницу предлагается переименовать в Беспроводная самоорганизующаяся сеть. Пояснение причин и обсуждение на странице Википедия:К переименованию/1 декабря 2012. Возможно, её текущее название не соответствует нормам современного… … Википедия

    Беспроводные ad hoc сети децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать данные предназначенные другим узлам. При этом… … Википедия

    Беспроводные ad hoc сети децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать данные предназначенные другим узлам. При этом… … Википедия

    Архитектура типичной беспроводной сенсорной сети Беспроводная сенсорная сеть распределённая, самоорганизующаяся сеть множества датчиков (сенсоров) и исполнительных устройств, объединенных между собой посредством радиоканала. Область… … Википедия

    Для улучшения этой статьи желательно?: Переработать оформление в соответствии с правилами написания статей. Проверить статью на грамматические и орфографические ошибки. Исправить статью согласно с … Википедия

    Телеметрия, телеизмерение (от др. греч. τῆλε «далеко» + μέτρεω «измеряю») совокупность технологий, позволяющая производить удалённые измерения и сбор информации для предоставления оператору или пользователю, составная часть… … Википедия

    Сверхширокополосные (СШП) сигналы радиосигналы (СВЧ сигналы) со «сверхбольшой» шириной полосы частот. Применяются для сверхширокополосной радиолокации и сверхширокополосной радиосвязи. Содержание 1 Определение 2 Регулирование … Википедия

    Первый Открытый Протокол беспроводной сети передачи данных, разработанный для целей автоматизации зданий и управления распределёнными объектами. One Net может быть использован со множеством существующих приемопередатчиков (трансиверов) и… … Википедия