Как вычислить расстояние между координатами gps. Нахождение расстояния между двумя точками Расстояние через координаты

Здесь будет калькулятор

Расстояние между двумя точками на прямой

Рассмотрим координатную прямую, на которой отмечены 2 точки: A A A и B B B . Чтобы найти расстояние между этими точками, нужно найти длину отрезка A B AB A B . Это делается при помощи следующей формулы:

Расстояние между двумя точками на прямой

A B = ∣ a − b ∣ AB=|a-b| A B = ∣ a − b ∣ ,

где a , b a, b a , b - координаты этих точек на прямой (координатной прямой).

Ввиду того, что в формуле присутствует модуль, при решении не принципиально, из какой координаты какую вычитать (так как берется абсолютная величина этой разности).

∣ a − b ∣ = ∣ b − a ∣ |a-b|=|b-a| ∣ a − b ∣ = ∣ b − a ∣

Разберем пример, чтобы лучше понять решение подобных задач.

Пример 1

На координатной прямой отмечены точка A A A , координата которой равна 9 9 9 и точка B B B с координатой − 1 -1 − 1 . Нужно найти расстояние между этими двумя точками.

Решение

Здесь a = 9 , b = − 1 a=9, b=-1 a = 9 , b = − 1

Пользуемся формулой и подставляем значения:

A B = ∣ a − b ∣ = ∣ 9 − (− 1) ∣ = ∣ 10 ∣ = 10 AB=|a-b|=|9-(-1)|=|10|=10 A B = ∣ a − b ∣ = ∣ 9 − (− 1 ) ∣ = ∣ 1 0 ∣ = 1 0

Ответ

Расстояние между двумя точками на плоскости

Рассмотрим две точки, заданные на плоскости. Из каждой отмеченной на плоскости точки нужно опустить по два перпендикуляра: На ось O X OX O X и на ось O Y OY O Y . Затем рассматривается треугольник A B C ABC A B C . Так как он является прямоугольным ( B C BC B C перпендикулярно A C AC A C ), то найти отрезок A B AB A B , он же является и расстоянием между точками, можно с помощью теоремы Пифагора. Имеем:

A B 2 = A C 2 + B C 2 AB^2=AC^2+BC^2 A B 2 = A C 2 + B C 2

Но, исходя из того, что длина A C AC A C равна x B − x A x_B-x_A x B x A , а длина B C BC B C равна y B − y A y_B-y_A y B y A , эту формулу можно переписать в следующем виде:

Расстояние между двумя точками на плоскости

A B = (x B − x A) 2 + (y B − y A) 2 AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2} A B = (x B x A ) 2 + (y B y A ) 2 ,

где x A , y A x_A, y_A x A , y A и x B , y B x_B, y_B x B , y B - координаты точек A A A и B B B соответственно.

Пример 2

Необходимо найти расстояние между точками C C C и F F F , если координаты первой (8 ; − 1) (8;-1) (8 ; − 1 ) , а второй - (4 ; 2) (4;2) (4 ; 2 ) .

Решение

X C = 8 x_C=8 x C = 8
y C = − 1 y_C=-1 y C = − 1
x F = 4 x_F=4 x F = 4
y F = 2 y_F=2 y F = 2

C F = (x F − x C) 2 + (y F − y C) 2 = (4 − 8) 2 + (2 − (− 1)) 2 = 16 + 9 = 25 = 5 CF=\sqrt{(x_F-x_C)^2+(y_F-y_C)^2}=\sqrt{(4-8)^2+(2-(-1))^2}=\sqrt{16+9}=\sqrt{25}=5 C F = (x F x C ) 2 + (y F y C ) 2 = (4 − 8 ) 2 + (2 − (− 1 ) ) 2 = 1 6 + 9 = 2 5 ​ = 5

Ответ

Расстояние между двумя точками в пространстве

Нахождение расстояния между двумя точками в этом случае происходит аналогично предыдущему за исключением того, что координаты точки в пространстве задаются тремя числами, соответственно, в формулу нужно добавить еще и координату оси аппликат. Формула примет такой вид:

Расстояние между двумя точками в пространстве

A B = (x B − x A) 2 + (y B − y A) 2 + (z B − z A) 2 AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2} A B = (x B x A ) 2 + (y B y A ) 2 + (z B z A ) 2

Пример 3

Найти длину отрезка F K FK

Решение

F = (− 1 ; − 1 ; 8) F=(-1;-1;8)

F K = (x K − x F) 2 + (y K − y F) 2 + (z K − z F) 2 = (− 3 − (− 1)) 2 + (6 − (− 1)) 2 + (0 − 8) 2 = 117 ≈ 10.8 FK=\sqrt{(x_K-x_F)^2+(y_K-y_F)^2+(z_K-z_F)^2}=\sqrt{(-3-(-1))^2+(6-(-1))^2+(0-8)^2}=\sqrt{117}\approx10.8

По условию задачи нам нужно округлить ответ до целого числа.

Математика

§2. Координаты точки на плоскости

3. Расстояние между двумя точками.

Мы с вами умеем теперь говорить о точках на языке чисел. Например, нам уже нет необходимости объяснять: возьмите точку, находящуюся на три единицы правее оси и на пять единиц ниже оси . Достаточно сказать просто: возьмите точку .

Мы говорили уже, что это создает определенные преимущества. Так, мы можем рисунок, составленный из точек, передать по телеграфу, сообщить его вычислительной машине, которая совсем не понимает чертежей, а числа понимает хорошо.

В предыдущем пункте мы задали при помощи соотношений между числами некоторые множества точек на плоскости. Теперь попробуем последовательно переводить на язык чисел другие геометрические понятия и факты.

Мы начнем с простой и обычной задачи.

Найти расстояние между двумя точками плоскости.

Решение:
Как всегда, мы считаем, что точки заданы своими координатами, и тогда наша задача состоит в том, чтобы найти правило, по которому можно вычислить расстояние между точками, зная их координаты. При выводе этого правила, конечно, разрешается прибегать к чертежу, но само правило не должно содержать никаких ссылок на чертеж, а должно только показывать, какие действия и в каком порядке надо совершать над данными числами - координатами точек, чтобы получить искомое число - расстояние между точками.

Быть может, некоторым из читателей этот подход к решению задачи покажется странным и надуманным. Чего проще, скажут они, точки заданы, пусть даже координатами. Нарисуйте эти точки, возьмите линейку и измерьте расстояние между ними.

Этот способ иногда не так уж плох. Однако представьте себе опять, что вы имеете дело с вычислительной машиной. В ней нет линейки, и она не рисует, но зато считать она умеет настолько быстро, что это для неё вообще не составляет никакой проблемы. Заметьте, что наша задача поставлена так, чтобы правило вычисления расстояния между двумя точками состояло из команд, которые может выполнить машина.

Поставленную задачу лучше сначала решить для частного случая, когда одна из данных точек лежит в начале координат. Начните с нескольких числовых примеров: найдите расстояние от начала координат точек ; и .

Указание. Воспользуйтесь теоремой Пифагора.

Теперь напишите общую формулу для вычисления расстояния точки от начала координат.

Расстояние точки от начала координат определяется по формуле:

Очевидно, правило, выражаемое этой формулой, удовлетворяет поставленным выше условиям. В частности, им можно пользоваться при вычислении на машинах, которые способны умножать числа, складывать их и извлекать квадратные корни.

Теперь решим общую задачу

Даны две точки плоскости и найти расстояние между ними.

Решение:
Обозначим через , , , проекции точек и на оси координат.

Точку пересечения прямых и обозначим буквой . Из прямоугольного треугольника по теореме Пифагора получаем:

Но длина отрезка равна длине отрезка . Точки и , лежат на оси и имеют соответственно координаты и . Согласно формуле, полученной в п. 3 параграфа 2, расстояние между ними равно .

Аналогично рассуждая, получим, что длина отрезка равна . Подставляя найденные значения и в формулу получаем.

С помощью координат определяют местоположение объекта на земном шаре. Координаты обозначаются по широте и долготе. Широты отсчитываются от линии экватора по обеим сторонам. В Северном полушарии широты положительные, в Южном полушарии – отрицательные. Долгота отсчитывается от начального меридиана либо на восток, либо на запад, соответственно получается либо восточная долгота, либо западная.

Согласно общепринятому положению, за начальный принят меридиан, который проходит через старую Гринвичскую обсерваторию в Гринвиче. Географические координаты местоположения можно получить с помощью GPS-навигатора. Этот прибор получает сигналы спутниковой системы позиционирования в системе координат WGS-84, единой для всего мира.

Модели навигаторов различаются по производителям, функционалу и интерфейсу. В настоящее время встроенные GPS-навигаторы имеются и в некоторых моделях сотовых телефонов. Но любая модель может записать и сохранить координаты точки.

Расстояние между координатами GPS

Для решения практических и теоретических задач в некоторых отраслях производства необходимо уметь определять расстояния между точками по их координатам. Для этого можно использовать несколько способов. Каноническая форма представления географических координат: градусы, минуты, секунды.

Для примера можно определить расстояние между следующими координатами: точка №1 - широта 55°45′07″ с.ш., долгота 37°36′56″ в.д.; точка №2 - широта 58°00′02″ с.ш., долгота 102°39′42″ в.д.

Наиболее простой способ - воспользоваться -калькулятором для расчета протяженности между двумя точками. В поисковике браузера необходимо задать следующие параметры для поиска: онлайн- для расчета расстояния между двумя координатами. В онлайн-калькуляторе вводятся значения широт и долгот в поля запросов для первой и второй координаты. При расчете онлайн-калькулятор выдал результат – 3 800 619 м.

Следующий способ более трудоемкий, но и более наглядный. Необходимо воспользоваться любой доступной картографической или навигационной программой. К программам, в которых можно создать точки по координатам и измерить расстояния между ними, относятся следующие приложения: BaseCamp (современный аналог программы MapSource), «Google Планета Земля», «SAS.Планета».

Все вышеперечисленные программы доступны для любого пользователя сети. К примеру, для расчета расстояния между двумя координатами в программе «Google Планета Земля» необходимо создать две метки с указанием координат первой точки и второй точки. Затем при помощи инструмента «Линейка» нужно соединить линией первую и вторую метки, программа автоматически выдаст результат промера и покажет путь на спутниковом снимке Земли.

В случае с примером, приведенным выше, программа «Google Планета Земля» выдала результат – протяженность расстояния между точкой №1 и точкой №2 составляет 3 817 353 м.

Почему возникает погрешность при определении расстояния

Все расчеты протяженности между координатами основаны на расчете длины дуги. В расчете длины дуги участвует радиус Земли. Но так как форма Земли близка к сплюснутому эллипсоиду, радиус Земли в определенных точках различается. Для расчетов расстояния между координатами принимается среднее значение радиуса Земли, что дает погрешность в измерении. Чем больше измеряемое расстояние, тем больше погрешность.

Расчет расстояний между точками по их координатам на плоскости элементарен, на поверхности Земли — немного посложнее: мы рассмотрим измерение расстояния и начального азимута между точками без проекционных преобразований. Для начала разберемся в терминологии.

Введение

Длина дуги большого круга – кратчайшее расстояние между любыми двумя точками находящимися на поверхности сферы, измеренное вдоль линии соединяющей эти две точки (такая линия носит название ортодромии) и проходящей по поверхности сферы или другой поверхности вращения. Сферическая геометрия отличается от обычной Эвклидовой и уравнения расстояния также принимают другую форму. В Эвклидовой геометрии, кратчайшее расстояние между двумя точками – прямая линия. На сфере, прямых линий не бывает. Эти линии на сфере являются частью больших кругов – окружностей, центры которых совпадают с центром сферы. Начальный азимут - азимут, взяв который при начале движения из точки А, следуя по большому кругу на кратчайшее расстояние до точки B, конечной точкой будет точка B. При движении из точки A в точку B по линии большого круга азимут из текущего положения на конечную точку B постоянно меняется. Начальный азимут отличен от постоянного, следуя которому, азимут из текущей точки на конечную не меняется, но маршрут следования не является кратчайшим расстоянием между двумя точками.

Через любые две точки на поверхности сферы, если они не прямо противоположны друг другу (то есть не являются антиподами), можно провести уникальный большой круг. Две точки, разделяют большой круг на две дуги. Длина короткой дуги – кратчайшее расстояние между двумя точками. Между двумя точками-антиподами можно провести бесконечное количество больших кругов, но расстояние между ними будет одинаково на любом круге и равно половине окружности круга, или π*R, где R – радиус сферы.

На плоскости (в прямоугольной системе координат), большие круги и их фрагменты, как было упомянуто выше, представляют собой дуги во всех проекциях, кроме гномонической, где большие круги - прямые линии. На практике это означает, что самолеты и другой авиатранспорт всегда использует маршрут минимального расстояния между точками для экономии топлива, то есть полет осуществляется по расстоянию большого круга, на плоскости это выглядит как дуга.

Форма Земли может быть описана как сфера, поэтому уравнения для вычисления расстояний на большом круге важны для вычисления кратчайшего расстояния между точками на поверхности Земли и часто используются в навигации. Вычисление расстояния этим методом более эффективно и во многих случаях более точно, чем вычисление его для спроектированных координат (в прямоугольных системах координат), поскольку, во-первых, для этого не надо переводить географические координаты в прямоугольную систему координат (осуществлять проекционные преобразования) и, во-вторых, многие проекции, если неправильно выбраны, могу привести к значительным искажениям длин в силу особенностей проекционных искажений. Известно, что более точно описывает форму Земли не сфера, а эллипсоид, однако в данной статье рассматривается вычисление расстояний именно на сфере, для вычислений используется сфера радиусом 6372795 метров, что может привести к ошибке вычисления расстояний порядка 0.5%.

Формулы

Существует три способа расчета сферического расстояния большого круга. 1. Сферическая теорема косинусов В случае маленьких расстояний и небольшой разрядности вычисления (количество знаков после запятой), использование формулы может приводить к значительным ошибкам связанным с округлением. φ1, λ1; φ2, λ2 - широта и долгота двух точек в радианах Δλ - разница координат по долготе Δδ - угловая разница Δδ = arccos {sin φ1 sin φ2 + cos φ1 cos φ2 cos Δλ} Для перевода углового расстояния в метрическое, нужно угловую разницу умножить на радиус Земли (6372795 метров), единицы конечного расстояния будут равны единицам, в которых выражен радиус (в данном случае - метры). 2. Формула гаверсинусов Используется, чтобы избежать проблем с небольшими расстояниями. 3. Модификация для антиподов Предыдущая формула также подвержена проблеме точек-антиподов, чтобы ее решить используется следующая ее модификация.

Моя реализация на РНР

// Радиус земли define("EARTH_RADIUS", 6372795); /* * Расстояние между двумя точками * $φA, $λA - широта, долгота 1-й точки, * $φB, $λB - широта, долгота 2-й точки * Написано по мотивам http://gis-lab.info/qa/great-circles.html * Михаил Кобзарев < > * */ function calculateTheDistance ($φA, $λA, $φB, $λB) { // перевести координаты в радианы $lat1 = $φA * M_PI / 180; $lat2 = $φB * M_PI / 180; $long1 = $λA * M_PI / 180; $long2 = $λB * M_PI / 180; // косинусы и синусы широт и разницы долгот $cl1 = cos($lat1); $cl2 = cos($lat2); $sl1 = sin($lat1); $sl2 = sin($lat2); $delta = $long2 - $long1; $cdelta = cos($delta); $sdelta = sin($delta); // вычисления длины большого круга $y = sqrt(pow($cl2 * $sdelta, 2) + pow($cl1 * $sl2 - $sl1 * $cl2 * $cdelta, 2)); $x = $sl1 * $sl2 + $cl1 * $cl2 * $cdelta; // $ad = atan2($y, $x); $dist = $ad * EARTH_RADIUS; return $dist; } Пример вызова функции: $lat1 = 77.1539; $long1 = -139.398; $lat2 = -77.1804; $long2 = -139.55; echo calculateTheDistance($lat1, $long1, $lat2, $long2) . " метров"; // Вернет "17166029 метров"

Статья взята с сайта