Фазовый центр антенны (ФЦА) и его поиск в Ansys HFSS. Фазовый центр Коэффициент направленного действия и коэффициент усиления передающей антенны

При рассмотрении принципа действия параболического зеркала мы предполагали, что в его фокусе размещен точеч­ный источник. Реальные же облучатели имеют размеры, сравнимые с волной и часто даже превышающие ее.

Спрашивается, как же нужно размещать облучатель относительно фокуса? Какой из вибраторов - активный или пассивный у облучателей, показанных на рис. 43 и 44, должен находиться в фокусе зеркала?

Подобного рода вопросы всегда встают перед инжене­рами, разрабатывающими антенные устройства. И они дают на них такой ответ: с фокусом зеркала должна совпадать та точка облучателя, которая мысленно может рассматриваться как фазовый центр облучателя, т. е. как исходная точка сферических волн.

Местоположение фазового центра определяется экспери­ментальным путем. Опыт показывает, что у облучателей, по­казанных на рис. 43 и 44, фазовый центр расположен между активным и пассивным вибраторами, несколько ближе к пер­вому. У рупорных облучателей фазовый центр находится внутри него, в окрестностях горла рупора.

При условии, что если фазовый центр облучателя не будет совпадать с фокусом, возможны два случая.

Первым рассмотрим вариант продольной расфокусировки системы облучатель - зеркало, когда облучатель смещен в ту или иную сторону от фокуса вдоль оси OZ.

Обратимся к рис. 51 и построим ход отраженных от зер­кала лучей, считая, что в каждой точке параболоида отраже­ние радиоволны происходит по законам оптики как от плоского зеркала, касательного к параболе в данной точке.

Если при размещении облучателя в фокусе параболиче­ского зеркала отраженные лучи идут параллельно фокаль­ной оси OZ, то при перемещении облучателя из фокуса в сторону от зеркала (точка В) углы падения лучей в каждой точке зеркала увеличатся по сравнению с правильным рас­положением облучателя (j 2 > j 0). В силу известного закона оптики о равенстве углов падения углам отражения (j 1 = j 2), отраженные от зеркала лучи будут идти расходя­щимся пучком. При смещении же облучателя в точку А, лежащую за фокусом, отраженные лучи будут наклонены к оси OZ.

Так как волновые поверхности (фронт волны) перпенди­кулярны лучам, то во втором случае (точка А) фронт волны в раскрыве зеркала получается не плоским, а вогнутым; в первом случае фронт волны становится выпуклым.

В обоих случаях фронт волны симметричен относительно оси OZ, поэтому диаграмма направленности антенны при смещениях облучателя остается также симметричной, однако ее главный лепесток расширяется, сливаясь с первыми боко­выми лепестками.

При очень большой расфокусировке антенны может произойти даже раздвоение главного лепестка.

Представление о степени влияния искажений фронта волны в раскрыве антенны на ее коэффициент усиления дает рис. 52, на котором приведена зависимость уменьшения коэффициента усиления параболической антенны от абсо­лютной величины отклонения, а фазы отраженной волны у краев зеркала относительно фазы в центре его раскрыва.

За единицу на этом графике принято усиление идеальной антенны, у которой в излучающем отверстии создана плоская волна с равномерным распределением амплитуд.

На практике считают допустимыми отклонения фазы, не превышающие 1/8l. Уменьшение усиления антенны в этом случае не превосходит 8% (см. рис. 52).

У конкретных образцов антенн указанное требование вы­полняется за счет специальных конструктивных мер, исключающих возможность ошибочной установки облучателей и одновременно обеспечивающих взаимозаменяемость пос­ледних.

Рассмотрим теперь, как будут влиять на направленные свойства антенн поперечные перемещения облучателя.

Если вынести фазовый центр облучателя из фокуса в на­правлении, перпендикулярном оптической оси, то это приве­дет к несимметричному изменению фронта волны в раскрыве зеркала: он наклонится в сторону, противоположную смеще­нию облучателя (рис. 53). Но так как главный максимум излучения антенн всегда направлен по перпендикуляру к фронту волны, то в результате поперечной расфокусировки произойдет поворот главного максимума диаграммы направ­ленности на угол, равный углу наклона волны.

Одновременно несколько деформируется и сам главный лепесток. Степень этой деформации будет определяться тем, насколько сильно вынесен облучатель из фокуса.

Указанное свойство изменения направления главного ле­пестка диаграммы направленности при поперечном выносе облучателя широко используется в радиолокации для кача­ния (сканирования) луча.

Заканчивая краткое рассмотрение параболических антенн, укажем, что симметричные и несимметричные иска­жения фазы в их раскрывах могут произойти не только из-за расфокусировки облучателя, но и за счет отклонения профиля зеркала от параболического. Источником искаже­ний поля может быть и сам облучатель, если его волновой фронт отличается от сферического.

В условиях эксплуатации причинами всех этих искаже­ний могут быть как механические повреждения зеркала и облучателя, так и атмосферные осадки в зимнее время.

Наросты льда и снега на зеркале и облучателе, как пра­вило, изменяют расчетный ход лучей и оказываются элек­трически эквивалентными искривлению профиля зеркала или расфокусировке облучателя. Поэтому следует тщательно соблюдать все правила эксплуатации антенн, которые обычно излагаются в инструкциях и руководствах к конкрет­ной аппаратуре. Последнее замечание, разумеется, относится к антеннам всех типов.

Ширина главного лепестка и уровень боковых лепестков

Ширина ДН (главного лепестка) определяет степень концентрации излучаемой электромагнитной энергии. Ширина ДН - это угол между двумя направлениями в пределах главного лепестка, в которых амплитуда напряжённости электромагнитного поля составляет уровень 0,707 от максимального значения (или уровень 0,5 от максимального значения по плотности мощности). Ширина ДН обозначается так:

2и - это ширина ДН по мощности на уровне 0,5;

2и - ширина ДН по напряжённости на уровне 0,707.

Индексом Е или Н обозначают ширину ДН в соответствующей плоскости: 2и, 2и. Уровню 0,5 по мощности соответствует уровень 0,707 по напряжённости поля или уровень - 3 дБ в логарифмическом масштабе:

Экспериментально ширину ДН удобно определять по графику, например, как это показано на рисунке 11.

Рисунок 11

Уровень боковых лепестков ДН определяет степень побочного излучения антенной электромагнитного поля. Он влияет на качество электромагнитной совместимости с ближайшими радиоэлектронными системами.

Относительный уровень бокового лепестка - это отношение амплитуды напряжённости поля в направлении максимума первого бокового лепестка к амплитуде напряжённости поля в направлении максимума главного лепестка (рисунок 12):

Рисунок 12

Выражается этот уровень в абсолютных единицах, либо в децибелах:

Коэффициент направленного действия и коэффициент усиления передающей антенны

Коэффициент направленного действия (КНД) количественно характеризует направленные свойства реальной антенны по сравнению с эталонной ненаправленной (изотропной) с ДН в виде сферы:

КНД - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности П(и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности излучения антенн одинаковы:

С учётом (25) можно получить:

Коэффициент усиления (КУ) антенны - это параметр, который учитывает не только фокусирующие свойства антенны, но и её возможности по преобразованию одного вида энергии в другой.

КУ - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности ПЭ (и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности, подведённые к антеннам, одинаковы.

Коэффициент усиления можно выразить через КНД:

где - коэффициент полезного действия антенны. На практике используют - коэффициент усиления антенны в направлении максимального излучения.

Фазовая диаграмма направленности. Понятие о фазовом центре антенны

Фазовая диаграмма направленности - это зависимость фазы электромагнитного поля, излучаемого антенной, от угловых координат.

Так как в дальней зоне антенны векторы поля Е и Н синфазны, то и фазовая ДН в одинаковой степени относится к электрической и магнитной составляющей ЭМП, излучаемого антенной. Обозначается фазовая ДН следующим образом: Ш = Ш (и, ц) при r = const.

Если Ш (и, ц) = const при r = const, то это означает, что антенна формирует фазовый фронт волны в виде сферы. Центр этой сферы, в котором находится начало системы координат, называют фазовым центром антенны (ФЦА). Следует отметить, что фазовый центр имеют не все антенны.

У антенн, имеющих фазовый центр и многолепестковую амплитудную ДН с чёткими нулями между ними, фаза поля в соседних лепестках отличается на р (180°). Взаимосвязь между амплитудной и фазовой диаграммами направленности одной и той же антенны иллюстрируется на рисунке 13.

Рисунок 13 - Амплитудная и фазовая ДН

Направление распространения ЭМВ и положение её фазового фронта в каждой точке пространства взаимно перпендикулярны.

Точка во внутреннем пространстве антенны, в которую поступает информация об измерениях. Примечаниие В общем случае фазовый центр не совпадает с точкой относимости антенны ни в плане, ни по высоте. Взаимное положение фазового центра и точки… …

Проектирование фазированных антенных решёток - Содержание 1 Введение в теорию 2 Методы расчёта ха … Википедия

Теория фазированных антенных решёток - Содержание 1 Введение в теорию 1.1 КНД … Википедия

ГОСТ 26566-85: Система инструментального захода летательных аппаратов на посадку сантиметрового диапазона волн радиомаячная. Термины и определения - Терминология ГОСТ 26566 85: Система инструментального захода летательных аппаратов на посадку сантиметрового диапазона волн радиомаячная. Термины и определения оригинал документа: 3. Азимутальный радиомаяк системы МЛС Азимутальный радиомаяк… …

АНТЕННА - (от лат. antenna мачта, рей), устройство для излучения или приёма радиоволн. А. оптимально преобразует подводимые к ней эл. магн. колебания в излучаемые эл. магн. волны (передающая А.) или, наоборот, преобразует падающие на неё эл. магн. волны в… … Физическая энциклопедия

Радио-антенна - Антенна радиотелескопа РТ 7.5 МГТУ им. Баумана. РФ, Московская область, Дмитровский район. Диаметр зеркала 7,5 метра, рабочий диапазон длин волн: 1 4 мм Антенна устройство для излучения и приёма радиоволн (разновидности электромагнитного… … Википедия

плоскость отсчета системы МЛС - Вертикальная плоскость, проходящая через ось взлетно посадочной полосы или площадки для азимутальных радиомаяков системы МЛС, и горизонтальная плоскость, проходящая через фазовый центр антенны для угломестных радиомаяков системы МЛС. [ГОСТГОСТ… … Справочник технического переводчика

Плоскость отсчета системы МЛС - 35. Плоскость отсчета системы МЛС Reference plane Вертикальная плоскость, проходящая через ось взлетно посадочной полосы или площадки для азимутальных радиомаяков системы МЛС, и горизонтальная плоскость, проходящая через фазовый центр антенны для … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения - Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации

ФАЗОВРАЩАТЕЛЬ - устройство, осуществляющее поворот фазы электрич. сигнала. Широко используется в разл. радиотехн. устройствах антенной технике, технике связи, радиоастрономии, измерит. технике и др. (см. также Антенна, Радиоприёмные устройства, Радиопередающие… … Физическая энциклопедия

ГОСТ Р МЭК 61094-3-2001: Государственная система обеспечения единства измерений. Микрофоны измерительные. Первичный метод градуировки по свободному полю лабораторных эталонных микрофонов методом взаимности - Терминология ГОСТ Р МЭК 61094 3 2001: Государственная система обеспечения единства измерений. Микрофоны измерительные. Первичный метод градуировки по свободному полю лабораторных эталонных микрофонов методом взаимности оригинал документа:… … Словарь-справочник терминов нормативно-технической документации

Антенны – это устройства, согласующие искусственную систему канализации электромагнитных волн (ЭМВ) с окружающей естественной средой их распространения.

Антенны являются неотъемлемой составной частью любой системы радиосвязи, которую используют электромагнитные волны в технологических целях. Помимо согласования между собой искусственных и естественных сред распространения ЭМВ, антенны могут выполнять ряд других функций, важнейшей из которых является пространственная и поляризационная селекция принимаемых и излучаемых ЭМВ.

Справка:

Согласованные системы – это системы, которые передают друг другу максимум предназначенной для передачи электромагнитной мощности.

Различают приемные и передающие антенны.

Передающие антенны

Структурная схема

1 – вход антенны, к которому подключен питающий волновод от передатчика;

2 – согласующее устройство, которое обеспечивает режим бегущих волн в питающем волноводе;

3 – распределительная система, которая обеспечивает требуемое пространственное амплитудно-фазовое распределение излучающих полей;

4 –излучающая система (излучатель), обеспечивает заданные поляризационные и направленные излучения ЭМВ.

Приемные антенны

Структурная схема

1 – выход антенны, к которому подключен волновод, соединяющий антенну с приемником;

2 – согласующее устройство;

3 – интегратор – устройство, обеспечивающее взвешенное когерентно-синфазное суммирование пространственных электромагнитных полей;

4 – принимающая система, обеспечивает поляризационную и пространственную селекцию ЭМВ, поступающих в антенну из окружающей ее естественной среды.

Справка:

    Элементы структуры передающей и приемной антенн, обозначенные одинаковыми цифрами, могут иметь идентичные конструкции, в следствии чего в отрыве от системы, в которой антенны функционируют, отличить передающую антенну от приемной и наоборот невозможно.

    Существуют приемно-передающие антенны.

Классификация антенн

Для систематизации разнообразных типов антенн их объединяют по ряду общих признаков. Классификационные признаки могут быть:

    рабочий диапазон волн;

    общность конструкции;

    принцип роботы;

    назначение.

Классы могут быть разбиты на подклассы и т. д.

По назначению все антенны делятся на два больших класса:

    передающие;

    приемные.

В эти два класса входят подтипы:

    антенны стоячей волны;

    антенны бегущей волны;

    апертурные антенны;

    антенны с обработкой сигналов;

    активные антенные решетки;

    сканирующие антенные решетки.

Основные задачи теории антенн

Существует две задачи:

    задача анализа свойств конкретных антенн;

    задача проектирования антенн по заданным исходным требованиям к ним.

Задачу анализа следует решать исходя из условий: искомые ЭМВ должны удовлетворять уравнения Максвелла, граничным условиям на поверхности раздела сред и условиям излучения Зоммерфельда.

В таких жестких условиях постановки решения задач проведение анализа возможно только для некоторых частных случаев (например для симметрического электрического вибратора).

Распространены приближенные методы решения задач анализа, по которым эти задачи разделяют на две части:

Внутреннюю задачу;

Внешнюю задачу.

Внутренняя задача призвана определить распределение токов в антенне реальных или эквивалентных. Внешняя задача состоит в определении поля излучения антенны по известному распределению токов ней. При решении внешней задачи широко используется метод суперпозиции, заключающийся в разбиении антенны на элементарные излучатели и последующее суммирование полей.

Задача проектирования антенны состоит в нахождении геометрической формы и размеров конструкции, обеспечивающие ее требуемые функциональные свойства. Решение задач проектирования (синтеза) антенн возможно:

    посредством применения результатов анализа конкретных типов антенн и метода последовательных приближений, то есть путем изменения параметров (этап параметрической оптимизации) с последующим сравнением электрических характеристик, полученных таким образом новых вариантов известных антенн;

    посредством прямого синтеза, то есть минуя этап параметрической оптимизации. В этом случае задачи проектирования антенн разделяют на две подзадачи:

    классическая задача синтеза;

    задача конструктивного синтеза.

Первая состоит в описании амплитудно-фазового распределения тока (или поля) на излучателе антенны, которая обеспечивает заданные функциональные свойства антенн. Решение данной подзадачи еще не определяет конструкцию антенны, оно определяет только требования к ее распределению.

Вторая направлена на отыскание полной геометрии антенны по заданному амплитудно-фазовому распределению тока (или поля) на излучателе антенны. Эта задача значительно сложнее первой и конструктивно не однозначна, часто ее решают приближенно.

Однако для некоторых типов антенн разработана строга теория конструктивного синтеза.

Передающие антенны

Их характеристики и параметры

Структура электромагнитного поля (ЭМП) антенны

Каждую антенну можно рассматривать как систему элементарных излучателей, сосредоточенных в некотором ограниченном объеме линейного пространства (), ее ЭМ поле как суперпозицию ЭМ полей, составляющих ее элементарных излучателей. Для выявления структуры ЭМП антенны рассмотрим структуру ЭМП элемента прямолинейного гармонически изменяющегося с угловой частотой, тока с постоянной амплитудой и длиной этого элементав линейной неограниченной изотропной среде с постоянными параметрами, ,.

– абсолютная диэлектрическая проницаемость среды;

ε – относительная диэлектрическая проницаемость среды;

Электрическая постоянная;

– абсолютная магнитная проницаемость среды;

Относительная магнитная проницаемость среды;

Магнитная постоянная;

– удельная электрическая проводимость среды;

λ – длина волны.

М – точка наблюдения ЭМП;

r – радиальная координата точки М (расстояние от центра сферической системы координат до точки М);

– азимутальная координата точки М;

Меридиональная координата точки М.

Для рассматривания вибратора Герца, расположенного вдоль оси z, середина которого совмещена с центром сферической системы координат, решение уравнения Максвелла имеют вид (1.1), где

Единичные вектора;

момент электрического тока;

Ортогональные комплексные амплитудные составляющие по сферическим координатам,,вектора напряженности электрического поля;

, , - ортогональные комплексные амплитудные составляющие по сферическим координатам ,,вектора напряженности магнитного поля;

- волновое число;

Длина волны в безграничном пространстве.

Из выражений следует, что ЭМП линейного элемента тока представляет собой ортогональные в пространстве волны напряженности электрического и магнитного полей. При этом скорость изменения амплитуды каждой волны определяется относительным удалением точки от центра вибратора.

Различают три области поля:

Для области дальнего поля выражения принимают вид:

В дальней области ЭМП обладает следующими свойствами:

Для воздуха: .

В областях промежуточного и ближнего полей помимо сферической поперечной волны существуют локальные реактивные поля, интенсивность которых очень быстро увеличивается с уменьшением r. Эти поля содержат некоторый запас ЭМ энергии, которой они периодически обмениваются с антенной (с периодом ). Данные поля обусловливают реактивную составляющую входного сопротивления антенны.

Свойства ЭМП определяют функциональные свойства антенны, а свойства ближнего и промежуточного ЭМП определяют стабильность функциональных свойств и широкополосность антенн.

Область дальнего ЭМП часто называют областью излучения, а область ближнего ЭМП – областью индукции.

Для реальных антенн границы областей дальнего, промежуточного и ближнего полей определяют с учетом разности фаз волн, пришедших в точку наблюдения от краев антенны и ее центра.

При допустимой разности фаз в области дальнего поля, равной :

Область дальнего ЭМП будет при ;

Область промежуточного поля ;

Область ближнего поля , где

Расстояние от центра антенны до точки наблюдения;

- максимальный поперечный размер излучающей системы антенны.

Основные характеристики и параметры прередающей антенны

Свойства антенны подразделяются на:

    Радиотехнические;

    Конструктивные;

    Эксплуатационные;

    Экономические;

Функциональные свойствацеликом определяются сигнальными параметрами.

Характеристики и параметры передающей антенны:

    Комплексная векторная характеристика направленности

Комплексная векторная ХНА – это зависимость от направления (поляризация, фаза) электрического поля излученных антенной волн в равноудаленных от нее точках (на поверхности сферы радиуса r).

В общем случае комплексная ХНА состоит из трех сомножителей:

где - сферические координаты точки наблюдения поля излученной антенной волны.

    Амплитудная ХНА

Амплитудная ХНА – это зависимость от направления амплитуды напряженности электромагнитной волны, излученной антенной в равноудаленных от нее точках.

Обычно рассматривают нормированную амплитудную ХНА:

,

где - направление в котором значение амплитудной ХНА максимально.

    Диаграмма направленности антенны (ДНА)

Диаграмма направленности антенны – сечение амплитудной ХНА плоскостями, проходящими через направление или перпендикулярно ему.

Наиболее часто используется сечение взаимно ортогональными плоскостями.

Диаграмма направленности имеет лепестковую структуру. Лепестки характеризуются амплитудой и шириной.

Ширина лепестка ДНА – угол в пределах которого амплитуда лепестка изменяется в допустимых заданных пределах.

Лепестки бывают:

    Главный лепесток;

    Боковые лепестки;

    Задний лепесток.

Ширину лепестков определяют по нулям или по уровню половины максимальной мощности.

    По полю = 0.707;

    По мощности = 0.5;

    В логарифмическом масштабе = -3 дБ.

Нормированная амплитудная ХНА по мощности связана с амплитудной ХНА по полю соотношением:

Для изображения ДНА используют полярные и прямоугольные системы координат и три вида масштаба:

    Линейный (по полю);

    Квадратичный (по мощности);

    Логарифмический

Фазовая ХНА

Фазовая ХНА - это зависимость от направления фазы гармонической электромагнитной волны в области дальнего поля в равноудаленных от начала координат точках в фиксированный момент времени.

Справка:

Фазовый центр антенны – точка в пространстве, относительно которой значение фазы в дальней зоне не зависит от направления и изменяется скачком на при переходе от одного лепестка ХНА к другому.

Для точечного источника электромагнитной волны, излучающего сферическую волну, поверхность равных фаз имеет вид сферы.

    Поляризационная ХНА

Электромагнитная волна характеризуется поляризацией.

Поляризация – пространственная ориентация вектора Е, рассматриваемая в любой фиксированной точке дальнего поля в течении одного колебания.

В общем случае конец вектора Е за один период колебания в любой фиксированной точке пространства описывает эллипс, который расположен в плоскости, перпендикулярной направлению распространения волны (эллипс поляризации).

Поляризация характеризуется:

    параметрами эллипса;

    пространственной ориентацией эллипса;

    направлением вращения вектора Е.

    Сопротивление излучения антенны

Сопротивление излучения антенны – это волновое сопротивление окружающего антенну пространства, перещитанное ею на вход, или в любое сечение питающего ее волновода, где понятие полного тока имеет смисл и может быть определено.

Сопротивление излучения может бать посчитано по формуле:

сс ,

где I – значение полного тока в данном месте антенны или питающего ее двухпроводной линии, которая эквивалентна питающему полому волноводу.

    Входное сопротивление антенны

Входное сопротивление антенны – это отношение комплексных амплитуд гармонических напряжений и токов на входных клеммах антенны.

Входное сопротивление антенны характеризует антенну, как нагрузку для питающей линии.

Данный параметр используют в основном для линейных антенн, т.е. антенн, у которых входные напряжения и токи имеют ясный физический смысл и могут быть измерены.

Для антенн СВЧ обычно задают размеры сечения их входного волновода.

    Коэффициент полезного действия (КПД) антенны

Определяет эффективность передачи антенной в окружающие пространство.

Сопротивление потерь

Справка:

С увеличением f КПД антенны увеличивается от единиц процентов на длинных волнах, до 95-99% на СВЧ.

    Электрическая прочность и высотность антенны

Электрическая прочность антенны – способность антенн выполнять свои функции без электрического пробоя диэлектрика в ее конструкции или окружающей среды при увеличении поступающей на ее вход мощности электромагнитной волны.

Количественно электрическую прочность антенны характеризуют предельно допустимой мощностью и соответствующей ей критической напряженностью электрического поля, при которых начинается пробой.

    Высотность антенны

Высотность антенны – это способность антенн выполнять свои функции без электрического пробоя окружающей атмосферы при увеличении высоты расположения этой антенны при заданной мощности передачи.

Справка:

С увеличением высоты электрическая прочность сначала уменьшается, достигая минимума на высотах 40-100 км, а затем вновь возрастает.

    Диапазон рабочих частот антенны

Интервал частот от f max до f min , в пределах которого ни один из параметров и характеристик антенны не выходит за пределы, указанные в технических условиях.

Обычно диапазон определяется тем параметром, значение которого при изменении частоты раньше других выходит из допустимых пределов. Чаще всего этим параметром оказывается входное сопротивление антенны.

Количественными оценками диапазонных свойств антенны являются полоса пропускания и коэффициент пропускания:

Часто пользуются относительной полосой пропускания

Антенны по параметру делят на:

    Коэффициент направленного действия (КНД)

Коэффициент направленного действия антенны в заданном направлении - это число, показывающие во сколько раз значение вектора Пойнтинга в рассматриваемом направлении в фиксированной точке дальней зоны отличается от значения вектора Пойнтинга в этой же точке если заменить рассматриваемую антенну на абсолютно-ненаправленную (изотропную) антенну при условии равенства их излучаемых мощностей.

Справка:

Обычно указывают максимальное значение КНД антенны в направлении максимума ее излучения.

Вибратор: КНД=0.5;

Полуволновой симметричный вибратор: КНД=1,64;

Рупорная антенна: КНД ;

Зеркальная антенна: КНД ;

Антенны космических аппаратов: КНД ;

Ограничителем верхнего предела КНД являются технологические погрешности изготовления и влияние условий эксплуатации.

Минимальные значения максимумов КНД реальных антенн всегда >1 , т.к. абсолютно ненаправленных антенн не существует.

КНД связан по полю с нормированной амплитудной ХНА :

,

где максимальное значение КНД в направлении максимального излучения антенны, в котором .

КНД показ ывает тот выигрыш в мощности, который обеспечивает применение направленной антенны, но не учитывает тепловые потери в ней.

    Ко э ффициент усиления антенны

Коэффициент усиления антенны в данном направлении – это число, показывающие выигрыш в мощности от применения направленной антенны с учетом тепловых потерь в ней:

    Эквивалентная изотропно-излучаемая мощность

Эквивалентная изотропно-излучаемая мощность - это произведение подводимой к антенне мощности на максимальное значение ее коэффициента усиления.

    Коэффициент рассеивания антенны

Коэффициент рассеивания антенны – это число, показывающие долю излучаемой мощности, приходящейся на долю боковых и задних лепестков.

Определяет мощность, приходящуюся на главный лепесток ХНА

    Действующая длина антенны

Действующая длина антенны- длина гипотетического прямолинейного вибратора с равномерным распределением тока по всей его длине, который в направлении максимума своего излучения создает ту же величину напряженности поля, что и рассматриваемая антенна с той же величиной тока на входе.

В среде с волновым сопротивлением действующая длина антенны определяется выражением.

фазовый центр годограф техника вычислений

Ю. И. Чони - к.т.н., доцент, Казанский национальный исследовательский технический университет им. А.Н. Туполева − КАИ
E-mail: [email protected]


Рассмотрены особенности вычисления координат локального фазового центра (ЛФЦ) антенны, порождаемые как долей неоп-ределенности в самом понятии ЛФЦ, так и необходимостью исключить скачки фазы при вычислении обратных тригонометри-ческих функций. Отмечено, что координаты ЛФЦ зависят от направления наблюдения, при изменении которого в общем случае ЛФЦ описывает поверхность в трехмерном пространстве, а в двухмерной ситуации − линию-годограф, зачастую причудливой конфигурации. На примерах кольцевой антенной решетки с кардиоидными индивидуальными диаграммами сопоставлены результаты расчетов для трех разновидностей алгоритмов и продемонстрированы годографы ЛФЦ. Показано, что вычисление ЛФЦ как центра кривизны кривой фазового фронта может приводить к ошибочным результатам, противоречащим физическому смыслу.

Список литературы:

  1. Carter D. Phase centers of microwave antennas // IRE Trans. on Antennas and Propagation. 1956. V. 4. P. 597-600.
  2. Sander S., Cheng D. Phase center of helical beam antennas // IRE Internat. Convention Record. 1958. V. 6. P. 152-157.
  3. Вольперт А.Р. О фазовом центре антенны // Радиотехника. 1961. Т. 16. № 3. С. 3−12.
  4. Muehldorf E.I. The phase center of horn antennas // IEEE Trans. on Antennas and Propagation 1970. V. 18. P. 753-760.
  5. Kildal P.S. Combined E- and H-plane phase centers of antenna feeds // IEEE Trans. on Antennas and Propagation. 1983. V. 31. P. 199-202.
  6. Rao K.S., Shafai L. Phase centre calculation of reflector antenna feeds // IEEE Trans. on Antennas and Propagation. 1984. V. 32. P. 740-742.
  7. Teichman M. Precision phase center measurements of horn antennas // IEEE Trans. on Antennas and Propagation. 1970. V. 18. P. 689-690.
  8. Патент № 1350625 СССР. Способ определения фазового центра антенны / И.Н. Гвоздев, В.В. Иванов, А.В. Соснин, В.П. Чернолес. Опубл. 07.11.1987.
  9. Патент № 1702325 СССР. Способ определения фазового центра антенны / И.А. Винтер, А.С. Паутов. Опубл. 30.12.1991.
  10. Hussein Z.A., Rengarajan S.R. Ground plane effects on quadrifilar helix antenna phase center and radiation characteristics for GPS applications // Antennas and Propagation Society Internat. Symp. Digest. 1991. P. 1594-1597.
  11. Prata A. Misaligned antenna phase-center determination using measured phase patterns // IPN Progress Report 42-150. 2002. P. 1-9.
  12. Akrour B., Santerre R., Geiger A. Calibrating antenna phase centers. A tale of two methods // GPS World. February 2005. P. 49-53. URL: http://www2.unb.ca/gge/Resources/gpsworld.february05.pdf (дата обращения: июль 2017 г.).
  13. Choni Yu.I. Hodograph of antenna’s local phase center: computation and analysis // IEEE Trans. on Antennas and Propagation. 2015. V. 63. P. 2819-2823.
  14. Проценко М.Б., Нестерук С.В. Особенности расчета и анализ местоположения локального фазового центра антенны с эллиптической поляризацией // Наукові праці ОНАЗ ім. О.С. Попова. 2006. № 2. С. 6-10.
  15. Chen A., Su D. The effects of near-field factors on rectangular horn antenna"s phase center // 7th Internat. Symp. Antennas, Propagation & EM Theory. 2006. P. 1-4.
  16. Deboux P., Verdin B., Pichardo S. Calculation of the phase-center offset from 2D antenna radiation patterns // Proc. SPIE 9461. Radar Sensor Technology XIX; Active and Passive Signatures VI, 946102. May, 2015.
  17. Подкорытов А.Н. Математическая модель смещения фазовых центров антенн при высокоточном местоопределении в глобальных навигационных комплексах // Электронный журнал «Труды МАИ». 2012. Вып. 50. URL: http://trudymai.ru/publish¬ed.php?ID=28680.
  18. Zhang C., Lin S. UWB antipodal Vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns and minimal phase center variations // Proc. IEEE Antennas Propagation Soc. Int. Symp. 2007. P. 1973-1976.
  19. Владимиров В.М., Марков В.В., Шепов В.Н. Щелевая полосковая антенна круговой поляризации с дополнительными спиральными щелями в излучателе // Изв. ВУЗов. Физика. 2013. Т. 56. № 8/2. С. 97-101.
  20. Wang X., Yao J., Lu X., Lu W. Research on phase center stability of circularly polarized patch antennas for GPS applications // IEEE 4th Asia-Pacific Conf. Antennas and Propagation (APCAP). 2015. P. 362-365.
  21. Патент № 2326393 РФ. Способ определения положения фазового центра антенны / П.В. Миляев, А.П. Миляев, В.Л. Морев, Ю.Н. Калинин. Опубл. 10.06.2008.
  22. Padilla1 P., Fernandez J.M., Padilla1 J.L., Exposito-Domınguez G., Sierra-Castaner M., Galocha B. Comparison of different methods for the experimental antenna phase center determination using a planar acquisition system. // Progress in Electromagnetics Research. 2013. V. 135. P. 331-346.
  23. Chen Y., Vaughan R.G. Determining the three-dimensional phase center of an antenna // 2014 XXXIth URSI General Assembly and Scien. Symp. 2014. P. 1-4.
  24. Калинин Ю.Н. Измерение координат фазового центра антенны // Антенны. 2014. № 4. С. 54−62.
  25. Хабиров Д.О., Удров М.А. Методика определения координат центра излучения антенны и практические аспекты ее применения // Известия ВУЗов России. Радиоэлектроника. 2015. № 3. C. 30-33.
  26. Чони Ю.И. Синтез антенн по заданной амплитудной диаграмме направленности // Радиотехника и электроника. 1971. Т. 15. № 5. С. 726-734.