Что такое обратное напряжение? Как устроены и работают полупроводниковые диоды Прямой и обратный ток

Самым простым по конструкции в семействе полупроводников являются диоды, имеющие в конструкции всего два электрода, между которыми существует проводимость электрического тока в одну сторону. Такой вид проводимости в полупроводниках создается благодаря их внутреннему устройству.

Особенности устройства

Не зная конструктивных особенностей диода, нельзя понять его принципа действия. Структура диода состоит из двух слоев с проводимостью различного вида.

Диод состоит из следующих основных элементов:
  • Корпус . Выполняется в виде вакуумного баллона, материалом которого может быть керамика, металл, стекло и другие прочные материалы.
  • Катод . Он расположен внутри баллона, служит для образования эмиссии электронов. Наиболее простым устройством катода является тонкая нить, раскаляющаяся в процессе действия. Современные диоды оснащены косвенно накаляющимися электродами, которые выполнены в виде металлических цилиндров со свойством активного слоя, имеющего возможность испускать электроны.
  • Подогреватель . Это особый элемент в виде нити, раскаляющейся от электрического тока. Подогреватель расположен внутри косвенно накаляющегося катода.
  • Анод . Это второй электрод диода, служащий для приема электронов, вылетевших от катода. Анод имеет положительный потенциал, по сравнению с катодом. Форма анода чаще всего так же, как и катода, цилиндрическая. Оба электрода аналогичны эмиттеру и базе полупроводников.
  • Кристалл . Его материалом изготовления является германий или кремний. Одна часть кристалла имеет р-тип с недостатком электронов. Другая часть кристалла имеет n-тип проводимости с избытком электронов. Граница, расположенная между этими двумя частями кристалла, называется р-n переходом.

Эти особенности конструкции диода позволяют ему проводить ток в одном направлении.

Принцип действия

Работа диода характеризуется его различными состояниями, и свойствами полупроводника при нахождении в этих состояниях. Рассмотрим подробнее основные виды подключений диодов, и какие процессы происходят внутри полупроводника.

Диоды в состоянии покоя

Если диод не подключен к цепи, то внутри него все равно происходят своеобразные процессы. В районе «n» есть излишек электронов, что создает отрицательный потенциал. В области «р» сконцентрирован положительный заряд. Совместно такие заряды создают электрическое поле.

Так как заряды с разными знаками притягиваются, то электроны из «n» проходят в «р», при этом заполняют дырки. В итоге таких процессов в полупроводнике появляется очень слабый ток, увеличивается плотность вещества в области «р» до определенного значения. При этом частицы расходятся по объему пространства равномерно, то есть, происходит медленная диффузия. Вследствие этого электроны возвращаются в область «n».

Для многих электрических устройств направление тока не имеет особого значения, все работает нормально. Для диода же, большое значение имеет направление протекания тока. Основной задачей диода является пропускание тока в одном направлении, чему благоприятствует переход р-n.

Обратное включение

Если диоды подсоединять к питанию по изображенной схеме, то ток не будет проходить через р-n переход. К области «n» подсоединен положительный полюс питания, а к «р» — минусовой. В итоге электроны от области «n» переходят к плюсовому полюсу питания. Дырки притягиваются минусовым полюсом. На переходе возникает пустота, носители заряда отсутствуют.

При повышении напряжения дырки и электроны осуществляют притягивание сильнее, и на переходе нет носителей заряда. При обратной схеме включения диода ток не проходит.

Повышение плотности вещества возле полюсов создает диффузию, то есть, стремление к распределению вещества по объему. Это возникает при выключении питания.

Обратный ток

Вспомним о работе неосновных переносчиков заряда. При запертом диоде, через него проходит малая величина обратного тока. Он и образуется от неосновных носителей, двигающихся в обратном направлении. Такое движение возникает при обратной полярности питания. Обратный ток обычно незначительный, так как число неосновных носителей очень мало.

При возрастании температуры кристалла их число повышается и обуславливает повышение обратного тока, что обычно приводит к повреждению перехода. Для того, чтобы ограничить температуру работы полупроводников, их корпус монтируют на теплоотводящие радиаторы охлаждения.

Прямое включение

Поменяем местами полюса питания между катодом и анодом. На стороне «n» электроны будут отходить от отрицательного полюса, и проходить к переходу. На стороне «р» дырки, имеющие положительный заряд, оттолкнутся от положительного вывода питания. Поэтому электроны и дырки начнут стремительное движение друг к другу.

Частицы с разными зарядами скапливаются возле перехода, и между ними образуется электрическое поле. Электроны проходят через р-n переход и двигаются в область «р». Часть электронов рекомбинирует с дырками, а остальные проходят к положительному полюсу питания. Возникает прямой ток диода, который имеет ограничения его свойствами. При превышении этой величины диод может выйти из строя.

При прямой схеме диода, его сопротивление незначительное, в отличие от обратной схемы. Считается, что обратно ток по диоду не проходит. В результате мы выяснили, что диоды работают по принципу вентиля: повернул ручку влево – вода течет, вправо – нет воды. Поэтому их еще называют полупроводниковыми вентилями.

Прямое и обратное напряжение

Во время открытия диода, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм. В этом можно убедиться путем измерения мультиметром.

Сопротивление полупроводникового кристалла может изменяться в зависимости от напряжения. При увеличении этого значения сопротивление снижается, и наоборот.

Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

Характеристика диодов

Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

ПОЛУПРОВОДНИКОВЫЙ ДИОД - полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл - полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов. Принцип действия полупроводникового диода : В основе принципа действия полупроводникового диода - свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном - при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Характеристики:

2.Полупроводниковые диоды, прямое и обратное включение, вах:

Прямое и обратное включение:

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход привод к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

Синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание. Остаётся рассмотреть только два случая – прямое включение диода иобратное включение диода .

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод, и ток через диод будет течь. Вот только «пробой» - это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

Читайте также:
  1. II. Снимается напряжение с КР в момент включения тяговых двигателей.
  2. III. Снялось напряжение с КР при пуске тяговых двигателей.
  3. IV. Снимается напряжение с КР при следовании на автоматической характеристике ТД.
  4. IV. Уравнение прямой, проходящей через данную точку в заданном направлении. Пучок прямых.
  5. А - регулярное; б –бигармоническое; в – блочное; г – случайное напряжение
  6. В таблице 2.1 U0 - выпрямленное напряжение, I0 – выпрямленный ток, – мощность нагрузки, - коэффициент трансформации.
  7. В трехфазной трехпроводной линии имеется три фазных провода. Напряжение между любой парой проводов называется линейным напряжением (Uл).
  8. В уголовном праве в зависимости от особенностей психического содержания выделяют прямой и косвенный умысел.
  9. В. Для обнаружения антител в реакции непрямой гемагглютинации

ВАХ диода.

(ВАХ) - график зависимости тока через двухполюсник от напряжения на этом двухполюснике. Чаще всего рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности поскольку для линейных элементов ВАХ представляет собой прямую линию и не представляет особого интереса.

Нелинейность ВАХ обусловлена тем, что сопротивление НЭ зависит от приложенного напряжения (диоды, стабилитроны) или от тока (терморезисторы). ВАХ нелинейных элементов описывается уравнениями, степени которых выше первой. Т.к сопротивление НЭ величина переменная, то мгновенное значение тока в них не пропорциональны мгновенным значениям напряжения. (стр.117 методичка)

Прямой и обратный ток. Прямое и обратное напряжение.

Когда сопротивление р - n перехода мало, через диод течет ток, называемый прямым током . Чем больше площадь р - n перехода и напряжение источника питания, тем больше этот прямой ток. Если полюсы элемента поменять местами, диод окажется в закрытом состоянии. Образуется зона, обедненная электронами и дырками, она оказывает току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода . Если диод включить в цепь с переменным током, он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления - прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления - обратный ток Iобр. Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (Uпp.) , а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (Uобр.) При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом.

Напряжение пробоя.

Диэлектрик, находясь в электрическом поле, теряет свои электроизоляционные свойства, если напряженность поля превысит некоторое критическое значение. Это явление носит название пробоя диэлектрика или нарушения его электрической прочности. Свойство диэлектрика противостоять пробою называется электрической прочностью (Епр). Напряжение, при котором происходит пробой изоляции, называют пробивным напряжением (Uпр).


Основные параметры диодов - это прямой ток диода (I пр) и максимальное обратное напряжение диода (U обр). Именно их надо знать, если стоит задача разработать новый выпрямитель для источника питания.

Прямой ток диода

Прямой ток диода можно легко вычислить, если известен общий ток , который будет потреблять нагрузка нового блока питания. Затем, для обеспечения надёжности, необходимо несколько увеличить это значение и получится ток, на который надо подобрать диод для выпрямителя. К примеру, блок питания должен выдерживать ток в 800 мА. Поэтому мы выбираем диод, у которого прямой ток диода равен 1А.

Обратное напряжение диода

Максимальное обратное напряжение диода - это параметр, который зависит не только от значения переменного напряжения на входе, но и от типа выпрямителя. Для объяснения этого утверждения, рассмотрим следующие рисунки. На них показаны все основные схемы выпрямителей.

Рис. 1


Рис. 2

На рисунке 2 изображён двухполупериодный выпрямитель с выводом средней точки. В нём также, как и в предыдущем, диоды надо подбирать с обратным напряжением в 3 раза превышающем действующее значение входного.

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом , а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом , то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса . При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны , которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов , которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Хотя эти ошибки встречаются редко, вы должны помнить, что это все возможности, а также диод, который прерывается и не работает, когда через него проходит большой ток. Вы также должны помнить, что диод изготовлен из материалов, которые легко разламываются. Единственное, что держит их вместе, - это тело диода.

Если тело диода расширяется, соединение размыкается. Также: Как работает конденсатор. На этих страницах вы найдете много полезного материала по «электронике в целом». При этом небольшом положительном напряжении практически отсутствует ток прямого тока . С положительным напряжением на его клеммах, мы говорим, что диод смещен вперед. Диод смещен вперед, когда его напряжение находится где угодно на стороне плюсового напряжения источника.

Устройство


Ниже приводится устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

Мы говорим, что диод обратный. В обратном направлении ток очень близок к нулю, всегда слегка отрицательный, ниже оси напряжения. Существует крошечный бит тока, который течет, когда диод обратный смещен. Мы называем это обратным током насыщения. В большинстве ситуаций это достаточно близко к нулю, чтобы его можно было игнорировать.

В некоторых случаях ток обратной насыщенности становится важным, и вы даете ему плохо звучащее имя: ток утечки. Обратный смещенный диод не может продержаться вечно. При пробое ток резко увеличивается и становится очень высоким в отрицательном направлении.

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока , она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом . Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Благодаря двум электродам он называется диодом. Затем диод считается смещенным вперед. В этом состоянии высота потенциального барьера на переходе уменьшается на величину, равную заданному прямому смещающему напряжению. Предполагая, что ток, протекающий через диод, будет очень большим, диод может быть аппроксимирован как короткозамкнутый переключатель. В этом состоянии величина, равная обратному смещающему напряжению, увеличивает высоту потенциального барьера на стыке. Однако процесс не может продолжаться бесконечно, поэтому в диоде продолжает протекать небольшой ток, называемый обратным током насыщения.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в , поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей , например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов . Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели , созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты . Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи . В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Этот ток ничтожно мал; диод может быть аппроксимирован как открытый замкнутый переключатель. Вольт-амперные характеристики диода объясняются следующими уравнениями. Рис. - Состояние смещения вперед. Рис. - Обратное смещение Условие. Табулируйте различные токи прямого тока, полученные для разных передовых напряжений.

  • Чтобы получить график в обратной области, замените вольтметр наном амперметре.
  • Вольтметр имеет меньшее сопротивление нагрузки по сравнению с диодом.
  • Ток работает по малой длине сопротивления.
  • Возьмите графический лист и разделите его на 4 равные части.
  • Отметьте начало координат в центре листа графика.
  • При этом эксперимент не превышает показания диода.
Результаты: учащиеся могут.

Прямое включение диода


На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

ВАХ и выпрямительный диод

Что такое трехвалентные и пентававалентные примеси? Трехвалентные примеси, образующие р-тип: алюминий, галлий, бор и индий. . Измените полярность напряжения, и он действует как короткое замыкание . Что такое диодное уравнение тока? Выражение динамического сопротивления?

Что подразумевается под внутренним полупроводником? Каков порядок энергетической щели в чистом полупроводнике? Что такое внешний полупроводник? Что такое легированный полупроводник? Что такое два разных типа примесей? Каковы носители заряда в чистом полупроводнике? Каково влияние температуры на проводимость полупроводника? Что подразумевается под прямым уклоном? Что означает обратное смещение? Что такое обратная разбивка? Каковы используемые полупроводниковые материалы? Сколько валентных электронов присутствует в каждом атоме полупроводника?

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле , при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Обратное включение диода


Каково статическое сопротивление диода? Что такое динамическое сопротивление диода? Напишите уравнение тока диода. Когда ток идет только в одном направлении, а падение напряжения на диоде всегда равно 7 В, напряжение на аноде должно быть примерно на 6 В выше, чем на катоде. Мы говорим, что диод находится в прямом смещении.

При питании диод можно проверить, измеряя падение напряжения. Напряжение на аноде должно быть на 7 В выше, чем на катоде. Является ли напряжение таким же, как у диода, коротким. При питании диод не только создает падение напряжения на 7 В, но и может разделять два разных напряжения. Напряжение на катоде не обязательно должно быть напряжением, исходящим от анода. Он также может исходить от другого источника напряжения. В общем, напряжение на катоде выше, чем у анода, напряжение исходит из где-либо еще, а диод удерживает напряжения отдельно.

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том , что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе , будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения , электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом , с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Прямое и обратное напряжение


Что представляет собой «прямой» диод?

Как всегда в электронике тепло является большой проблемой. В случае сомнений тщательно проверьте все точки пайки платы и отделите их. Когда диод неисправен, выберите более крупный тип, если это возможно. Диод, электронный компонент, который позволяет пропускать ток в одном направлении. Диоды, наиболее используемые в современных электронных схемах , представляют собой диоды из полупроводникового материала. Самый простой диод с точкой контакта германия был создан в первые дни радио. В современных германиевых диодах кабель и крошечная стеклянная пластина устанавливаются внутри небольшой стеклянной трубки и соединяются с двумя проводами, которые приварены к концам трубки.

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Соединительные диоды состоят из соединения двух разных типов полупроводникового материала. Зенеровский диод представляет собой специальную модель диодного диода, в которой используется кремний, в котором напряжение параллельно соединению не зависит от проходящего через него тока. Благодаря этой функции диоды Зенера используются в качестве регуляторов напряжения. С другой стороны, в светоизлучающих диодах напряжение, прикладываемое к соединению полупроводника, приводит к испусканию световой энергии.

Для решения проблем, связанных с диодами, в настоящее время используются три подхода. Первое приближение - это идеальный диод, в котором считается, что диод не имеет падения напряжения при проводке в положительном направлении, поэтому в этом первом приближении будет считаться, что диод является коротким замыканием в положительном направлении. Напротив, идеальный диод ведет себя как разомкнутая цепь, когда его поляризация является обратной. Во втором приближении мы считаем, что диод имеет падение напряжения при прямом поляризации. Наиболее часто используется второй подход.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика


Хотя существует широкий спектр типов, только некоторые особенности отличаются от их внешнего вида . Это не относится к размеру, потому что это функция мощности, которую они могут рассеять. Характерно найти айло в теле, которое указывает на катод. Для тех, чей конкретный тип обозначен рядом букв и цифр, катод отмечен кольцом в теле рядом с этим терминалом. Цвета, а в них катод соответствует терминалу, ближайшему к более толстой цветовой дорожке. Гермионовые наконечники обычно заключаются в стекле.

Анод этих диодов длиннее катода, и обычно поверхность капсулы вблизи катода плоская. Практичным способом определения катода является применение измерителя в омметре между его клеммами. Если мы используем режим проверки диода с помощью мультивещателя, мы получаем значение напряжения локтя устройства.

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать , что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы , может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Как только два материала соединяются, электроны и пустоты, находящиеся в области «соединения» или вблизи нее, объединяются, и это приводит к отсутствию носителей в области, близкой к переходу. Эта область обнаруженных отрицательных и положительных ионов называется областью истощения из-за отсутствия носителей. Существуют три возможности применения напряжения на диодных клеммах.

  • Поляризации нет.
  • Прямая поляризация.
  • Поляризация обратная.
В отсутствие приложенного напряжения смещения поток чистого заряда в любом направлении равен нулю для полупроводникового диода . Условие обратной поляризации. Количество отрицательных ионов, обнаруженных в материале Р-типа, также будет увеличиваться за счет электронов, впрыскиваемых отрицательным концом, который будет занимать пустоты. Ток в условиях обратной поляризации называется обратным током насыщения. При поляризации в обратном направлении его можно рассматривать как разомкнутую цепь.

Основные неисправности диодов


Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

Когда достигается обратное напряжение дизъюнкции, происходит резкое увеличение тока, которое может разрушить устройство. Этот диод имеет широкий спектр применений: выпрямительные цепи, ограничители, уровневые зажимы, защиту от коротких замыканий, демодуляторы, смесители, генераторы, блокировку и байпас в фотоволокна и т.д.

При использовании диода в цепи необходимо учитывать следующие соображения. Максимальное обратное напряжение, применимое к компоненту, повторяющееся или не превышающее максимальное, которое оно будет поддерживать. Максимальный постоянный ток , который может проходить через компонент, повторяющийся или нет, должен быть больше максимального, который он будет поддерживать.

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка , во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Максимальная мощность, которую может выдержать диод, должна быть больше максимальной, которую он выдерживает. На рисунке № 01 мы можем видеть графическое представление или символ для этого типа диода. Одним из важных параметров для диода является сопротивление в точке или области работы.

Поэтому диод представляет собой короткое замыкание для области проводимости. Если мы рассмотрим область потенциала, отрицательно примененную. Поэтому диод является открытой цепью в области отсутствия проводимости. Ток в области Зинера имеет направление, противоположное направлению прямого поляризованного диода. Зенеровский диод представляет собой диод, который был разработан для работы в зоне Зенера.

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои , которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои , возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Согласно определению, можно сказать, что диод Зенера был разработан для работы с отрицательными напряжениями. Важно отметить, что область Зенера контролируется или управляется путем изменения уровней легирования. Он применяется к регуляторам напряжения или источникам.

В схеме, показанной на рисунке 03, желательно защитить нагрузку от перенапряжений, максимальное напряжение, которое может выдерживать нагрузку, составляет 8 вольт. Согласно другим соображениям, работа этого диода примерно следующая. В зоне нарушения, между напряжением локтя и напряжением зенера, мы можем рассмотреть разомкнутую цепь.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов , входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

тепловым током, а доля теплового тока в обратном токе кремниевого диода очень мала. Обратный ток кремниевого диода определяется в основном генерационно-рекомбинационными процессами в p - n -переходе. Для инженерных расчетов обратного тока от температуры можно пользоваться приведенным ранее упрощенным выражением (2.4).

Прямая ветвь ВАХ диода отклоняется от идеализированной из-за наличия токов рекомбинации в p - n -переходе, падения напряжения на базе диода, изменения (модуляции) сопротивления базы при инжекции в нее неосновных носителей заряда и наличия в базе внутреннего поля, возникающего при большом токе инжекции. Запишем уравнение ВАХ идеальногоp - n -перехода (2.3) с учетом падения напряжения на базе диода:

где r б – омическое сопротивление базы диода.

Решение этого трансцендентного уравнения можно получить, прологарифмировав правую и левую части уравнения:


. (3.2)

Для малых токов это выражение можно упростить:


. (3.3)

Анализ уравнения (3.3) позволяет сделать некоторые интересные выводы. Падение напряжения на диоде зависит от тока через него и имеет большое значение у диодов с малымI T . Так как у кремниевых диодов тепловой ток мал, то и начальный участок прямой ветви ВАХ значительно более пологий, чем у германиевых. Объяснить это можно еще и тем, что ощутимый ток появляется в диоде, когда внешнее напряжение превышает контактную разность потенциалов к , а к (в соответствии с (2.1)) у кремниевогоp - n -перехода выше, чем у германиевого. Начальные участки прямой ветви ВАХ германиевого и кремниевого диодов показаны на рис. 3.2. Из рисунка видно, что напряжение на открытом кремниевом диоде обычно равно 0,60,8 В, напряжение на открытом германиевом диоде 0,20,3 В.

Ввиду огромного разнообразия применяемых диодов для отечественных полупроводниковых приборов используется специальная система обозначений. В основу системы обозначений положен буквенно-цифровой код.

Первый элемент кода обозначает исходный полупроводниковый материал, на основе которого изготовлен прибор. Используются следующие символы:

Г или 1 – для германия и его соединений;

К или 2 – для кремния и его соединений;

А или 3 – для соединений галлия (например, для арсенида галлия);

И или 4 – для соединений индия (например, для фосфида индия).

Второй элемент обозначения – буква, определяющая подкласс (или группу) приборов. Вот лишь некоторые из обозначений:

Д – диоды выпрямительные и импульсные;

Ц – выпрямительные столбы и блоки;

В – варикапы;

И – туннельные диоды;

А – сверхвысокочастотные диоды;

С – стабилитроны;

О – оптопары;

Н – динисторы;

У – триодные тиристоры…

Третий элемент обозначения – цифра, определяющая основные функциональные возможности прибора. Стандарт устанавливает использование каждой цифры применительно к различным подклассам приборов. При необходимости Вы можете это найти в специальной справочной литературе.

Четвертый элемент – число, обозначающее порядковый номер разработки.

Пятый элемент – буква, условно определяющая классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

Таким образом, зная систему условных обозначений , мы можем сказать, что ГД107Б – это германиевый выпрямительный диод с I ср вп 10 А, номер разработки 7, группа Б, а 2Ц202Г – столб выпрямительный из кремниевых диодов с 0,3 АI ср вп 10 А, номер разработки 2, группа Г.

3.2. Выпрямительные диоды

Диоды, предназначенные для преобразования переменного тока в постоянный, к быстродействию, емкости p - n -перехода и стабильности параметров которых обычно не предъявляют специальных требований, называютвыпрямительными . В качестве выпрямительных диодов используют сплавные, эпитаксиальные и диффузионные диоды, выполненные на основе несимметричныхp - n -переходов.

Для выпрямительных диодов характерно, что они имеют малые сопротивления в проводящем состоянии и позволяют пропускать большие токи. Барьерная емкость из-за большой площади p - n -переходов велика и достигает значений десятков пикофарад.

К основным параметрам диодов, приводимым в технической документации и справочной литературе, относятся:

1. Максимально допустимое обратное напряжение диода (U обр max ). Это значение напряжения, приложенного в обратном направлении, которое диод может выдержать в течение длительного времени без нарушения его работоспособности. Для различных диодов это напряжение может составлять от десятков до тысяч вольт.

2. Средний выпрямленный ток диода (I ср вп ) – максимально допустимое, среднее за период значение выпрямленного постоянного тока, протекающего через диод. Для различных диодов этот ток может составлять от сотен миллиампер до десятков ампер.

3. Импульсный прямой ток диода (I пр и ) – допустимое пиковое значение импульса тока при заданной максимальной длительности и скважности импульсов.

4. Обратный ток диода (I обр ) – постоянный обратный ток, обусловленный постоянным обратным напряжением.

5. Постоянное прямое напряжение (U пр ) – постоянное прямое напряжение, обусловленное заданным значением прямого тока. Отношение этих величин определяет сопротивление диода по постоянному току в заданной точке ВАХ.

3.3. Импульсные диоды

Импульсные диоды имеют малую длительность переходных процессов и предназначены для работы в импульсных цепях. От выпрямительных диодов они отличаются малыми емкостямиp - n -перехода (доли пикофарад) и рядом параметров, определяющих переходные характеристики диода. Уменьшение емкостей достигается за счет уменьшения площадиp - n -перехода, поэтому допустимые мощности рассеяния у них невелики (3050 мВт).

Рассмотрим воздействие на электрическую цепь, состоящую из диода VD и резистораR (рис. 3.3) знакопеременного импульсного напряженияU вх (рис. 3.4,а ). Напряжение на входе схемы в момент времениt = 0 скачком приобретает положительное значениеU m . Из-за инерционности диффузного процесса ток в диоде появляется не мгновенно, а нарастает в течение времениt уст . В момент времениt = t 1 в цепи устанавливается стационарный режим, при котором ток диода


,

анапряжение на диодеU д =U пр .

При t = t 2 напряжениеU вх меняет полярность. Однако заряды, накопленные на границеp - n - перехода, некоторое время поддерживают диод в открытом состоянии, но направление тока в диоде меняется на противоположное. По существу, в течение времениt расс происходит рассасывание зарядов на границеp - n - перехода (т.е. разряд эквивалентной емкости). После интервала времени рассасыванияt расс начинается процесс выключения диода, т.е. процесс восстановления его запирающих свойств.

К моменту времени t 3 напряжение на диоде становится равным нулю и в дальнейшем приобретает обратное значение. Процесс восстановления запирающих свойств диода продолжается до момента времениt 4 . К этому времени ток через диод становится равным нулю, а напряжение на нем достигает значения –U m . Таким образом, времяt вос можно отсчитывать от переходаU д через нуль до достижения током диода нулевого значения.

Рассмотрение процессов включения и выключения выпрямительного диода показывает, что диод не является идеальным вентилем, а в определенных условиях обладает проводимостью в обратном направлении. Особенно сильно эти эффекты проявляются при высокой частоте входного напряжения и при работе с импульсными сигналами. В связи с этой особенностью работы импульсных диодов в технической документации для них, кроме параметров, характеризующих обычный режим выпрямления, приводятся дополнительные параметры, характеризующие переходный процесс:

максимальное импульсное прямое напряжение U пр и max ;

максимально допустимый импульсный прямой ток I пр и max ;

время установления (t уст ) – интервал времени от момента подачи импульса прямого напряжения на диод до достижения заданного значения прямого тока в нем;

время восстановления обратного сопротивления диода – (t вос ).