Что такое аналоговая микросхема. Интегральные микросхемы. Классификация. Назначение. Цифровые интегральные микросхемы

    аналоговая интегральная схема

    Интегральная схема, в к рой приём, преобразование (обработка) и выдача информации, представленной в аналоговой форме, осуществляются посредством непрерывных сигналов; в А. и. с. выходной сигнал является непрерывной функцией входного. А. и. с.… … Большой энциклопедический политехнический словарь

    - (ПАИС; англ. Field programmable analog array) набор базовых ячеек, которые могут быть сконфигурированы и соединены между собой для реализации наборов аналоговых функций: фильтров, усилителей, интеграторов, сумматоров, ограничителей,… … Википедия

    Запрос «БИС» перенаправляется сюда; см. также другие значения. Современные интегральные микросхемы, предназначенные для поверхностного монтажа Интегральная (микро)схема (… Википедия

    Цифровая интегральная микросхема (цифровая микросхема) это интегральная микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. В основе цифровых интегральных микросхем лежат… … Википедия

    Современные интегральные микросхемы, предназначенные для поверхностного монтажа. Советские и зарубежные цифровые микросхемы. Интегральная (engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро)схема (ИС, ИМС, м/сх) … Википедия

    аналоговая микросхема - analoginis integrinis grandynas statusas T sritis radioelektronika atitikmenys: angl. analog integrated circuit vok. Analog IC, n; integrierter Analogschaltkreis, m rus. аналоговая интегральная схема, f; аналоговая микросхема, f pranc. circuit… … Radioelektronikos terminų žodynas

Поэтому обычно приходится идти на компромисс и питать ОУ пониженным (для него) напряжением. Большинство современных ОУ работоспособно при напряжении питания более 3 В (±1,5 В), и только серия К574 - при напряжении питания более 5 В. Также, специально для применения в низковольтной (5 В) цифровой технике, выпускаются ОУ и серий LM2901…LM2904: их параметры идеальны при напряжении питания 5 В, а работоспособность сохраняется в «стандартном» диапазоне 3…30 В. Необходимую для работы ОУ и компаратора «половину напряжения питания» можно «сделать» с помощью делителя напряжения на .

Еще одна проблема - согласование по уровням. Подавать на вход аналоговых микросхем цифровой сигнал нельзя, особенно сигнал с выхода -микросхем (у них амплитуда выходного напряжения равна напряжению питания). Подробнее об этом говорилось выше, а уменьшить амплитуду сигнала с выхода цифровой можно с помощью делителя напряжения.

Сигнал на выходе аналоговой , работающей в цифровом режиме, практически всегда имеет достаточную амплитуду для нормальной работы цифровой , но попадаются в этом плане и «уроды». У некоторых аналоговых микросхем уровню лог. «0» соответствует напряжение на выходе, равное +2,1…2,5 В относительно общего провода (с которым соединен отрицательный вход питания ), а у ТТЛ-схем и некоторых напряжение переключения равно 1,4…3,0 В. То есть с помощью такой аналоговой установить уровень лог. «0» на входе упомянутой выше цифровой невозможно. А вот с установкой уровня лог. «1» на входе цифровой проблем не возникает практически никогда. Поэтому выходов два: или подать на вход «-U» только аналоговой небольшое отрицательное напряжение (-2…-3 В) относительно общего провода (рис. 2.8, о), которое можно сформировать с помощью любого генератора, к выходу которого подключен – (рис. 2.8, б); R нужен для того, чтобы при напряжении на выходе ОУ, меньшем напряжения на общем проводе, не вывести из строя цифровую микросхему (ТТЛ) или не перегрузить защитный (), его может быть от 1 кОм до 100 кОм. Второй выход - поставить между аналоговой и цифровой микросхемой (рис. 2.8, в): при этом на входе цифровой уменьшится и напряжение уровня лог. «1», что несущественно, и напряжение уровня лог. «0», что нам и надо.

Выходы компараторов обычно выполняются по схеме с открытым коллектором (рис. 2.8, г), поэтому при использовании компараторов для управления цифровыми схемами «подтягивающий» обязателен (он включается между выходом компаратора и шиной «+U»). В ТТЛ-схемах эти установлены внутри на каждом входе, в -схемах их нужно устанавливать «снаружи». «Внутри» компараторов «подтягивающих» резисторов никогда не бывает.

Падение напряжения на переходах выходного транзистора компаратора (рис. 2.8, г) не превышает 0,8…1,0 В, поэтому проблем с управлением цифровыми схемами никогда не возникает. Так как выход компаратора выполнен по схеме с открытым коллектором, то напряжение питания компаратора («+U») может быть больше или меньше напряжения питания цифровой - при этом никаких изменений в схему вносить не нужно. «Подтягивающий» в таком случае нужно включать между выходом компаратора и шиной «+U» цифровой части .

Допустим, что нам нужно создать , которое будет контролировать величину собственного напряжения питания и, как только оно станет больше или меньше нормы, включит .

Для начала попробуем создать такое на основе цифровых микросхем. Как известно, напряжение переключения цифровой весьма слабо от ее напряжения питания, поэтому для контроля напряжения питания вход логического элемента через можно непосредственно соединить с шинами питания (рис. 2.10, а). В этой схеме нижний реагирует на понижение напряжения питания (тогда на его выходе устанавливается «единица»), а верхний - на повышение - ив таком случае на выходе элемента DD1.2 устанавливается уровень лог. «1». Сигналы с выходов обоих каналов суммируются диодной схемой «2ИЛИ», и при «единице» на одном из выходов на выходе DD1.4 устанавливается уровень лог. «0», разрешающий работу генератора.

Эту схему можно упростить, если использовать многовходовые (рис. 2.10, б). В этих схемах DD1.2 (рис. 2.10, а)

Рис. 2.10. Устройства контроля напряжения: а - на инверторах; б - усовершенствованные на логических элементах; в - на аналоговых микросхемах используется одни из «входных» элементов - благодаря этому отпала надобность в сумматоре. Надеюсь, вы сами разберетесь, как работают эти .

Собрав одну из этих схем, вы заметите, что, пока напряжение питания находится в пределах нормы, потребляемый схемой ток не превышает нескольких микроампер, но при приближении к границе нормы он резко увеличивается в тысячи раз. Возникли сквозные токи. При дальнейшем изменении напряжения питания включится (если напряжение питания пульсирующее, то он вначале будет «тарахтеть» в такт с пульсациями) и через некоторое время, при еще большем изменении напряжения питания, потребляемый схемой ток начнет уменьшаться.

Если вам такие «фокусы» не нужны, поставьте в схему или ОУ. Если запускается уровнем лог. «О» - удобнее : их выходы можно соединить вместе (с ОУ так поступать нельзя!) и «обойтись» общим «подтягивающим» резистором. А вот если запускается «единицей» - удобнее ОУ: сэкономите 2 резистора, через которые в «ждущем» режиме (пока напряжение в пределах нормы) протекает ток.

В отличие от рассмотренных выше, в такой схеме понадобится источник образцового напряжения. Проще всего собрать его на резисторе и стабилитроне или на генераторе тока и резисторе (или, что лучше, стабилитроне). Вариант на резисторе со стабилитроном самый дешевый, но большинство стабилитронов начинают нормально работать только при протекающем через них токе в несколько миллиампер, а это сказывается на энергопотреблении всей . Впрочем, современные малогабаритные отечественные начинают стабилизировать напряжение при токе от 10 мкА. У на основе генераторов тока () минимальный ток стабилизации может быть любой.

Для того чтобы меньше нагружать , его выход непосредственно соединим со входами компараторов ( современных ОУ и компараторов ничтожно мал и не превышает 0,1 мкА), а подстроечные «регулирующие» включим так же, как и у рассмотренных выше схем. Получилось то, что изображено на рис. 2.10, в; к выходам этих схем можно подключить любой. Если использовать в схеме счетверенные ОУ (), можно собрать на «свободных» элементах.

А теперь, чтобы решить, какая из схем (цифровая или аналого-цифровая) лучше, сравним их характеристики:

Как видно, преимущества и недостатки есть у обеих схем, причем преимущества одной покрывают недостатки другой и наоборот. Поэтому не нужно изо всех сил стремиться собрать свое по «правильной» схеме, в которой с цифровым сигналом работает цифровая , а с аналоговым - аналоговая; иногда нестандартное включение элементов, как на рис. 2.10, а и 2.10,6, позволяет сэкономить и на деталях, и на электричестве. Но с нестандартным включением нужно быть крайне осторожным: большинство элементов в таком режиме неустойчиво, и под влиянием малейших воздействий они могут «забастовать», а то и вообще выйти из строя. Предсказать развитие событий при нестандартном включении элементов очень сложно даже для опытных радиолюбителей-практиков, поэтому определить работоспособность (или неработоспособность) той либо иной «нестандартной» можно только на макете. При этом вы заодно узнаете потребляемый схемой ток и некоторые другие, интересующие вас, характеристики, а также сможете подкорректировать номиналы отдельных элементов.

Особое место в истории электроники занимает так называемый «таймер 555», или попросту «555» (предприятие, разработавшее эту микросхему, назвало его «ΝΕ555», отсюда и пошло название). эта представляет собой простую, как и все гениальное, комбинацию аналоговых и цифровых устройств, и благодаря этому ее универсальность потрясающа. В свое время (начало 90-х годов) во многих радиолюбительских изданиях действовала рубрика типа «придумай новое применение таймера 555» - тогда только стандартных схем включения этой было предложено больше, чем страниц в этой книге.

А он (принцип действия) весьма прост: под воздействием внешнего аналогового (не цифрового!) модулирующего сигнала изменяется частота, скважность, или длительность выходного сигнала.

Бывают двух видов: линейные и импульсные. Линейные (амплитудные, частотные, фазовые и т. д.) используются только в радиовещании, поэтому рассматриваться здесь не будут. бывают широтно-импульсные (ШИМ) и фазо-импульсные (ФИМ). Друг от друга они практически ничем не отличаются, поэтому их нередко путают Делать этого нельзя - ведь если придумали для них два разных названия, значит, это кому-то было нужно. Отличаются они тем, что у ФИМ частота выходного сигнала неизменна (т. е. если длительность импульса в X раз увеличилась, то длительность паузы в X раз уменьшится), а у ШИМ - изменяется (длительность одного из полупериодов - импульса или паузы - всегда одинакова, а у другого - изменяется в такт модулирующему напряжению).

Рассматривать работу модуляторов будем по диаграммам, расположенным рядом с рисунками. Модулирующий сигнал для таймера 555 очень удобно подавать на его вход REF (этот вход у таймера 555 предназначен именно для этого; полагать «модулирующий» сигнал на вход REF других микросхем нельзя!), что обычно и делают.

Начнем с ФИМ. этот практически ничем не отличается от обычного генератора, и частота выходных импульсов ФИМ рассчитывается по формуле для генератора. Но давайте посмотрим, что будет, если на вход REF «генератора» подать внешнее напряжение.

Как видно из диаграмм, под воздействием модулирующего напряжения изменяется , или, если кто забыл суть этого термина, отношение периода импульса (лог. «1» + лог. «О») к длительности импульса (лог. «1»). А происходит это вот почему.

Когда на вход REF не подается внешнее напряжение, напряжение на нем равно 2/3 напряжения питания и равна 2, т. е. длительность импульса равна длительности паузы. В этом нетрудно убедиться с помощью теоретических расчетов: уровень лог. «О» на выходе генератора установится только после того, как напряжение на его входах R и S станет равным 1/3 U cc относительно шины «U cc », а уровень лог. «1» - после того, как напряжение на входах станет равным 2/4 U cc относительно общего провода. В обоих случаях падение напряжения на частотозадающем резисторе R1 одинаково, поэтому и длительности импульса и паузы одинаковы.

Предположим, что под воздействием внешнего сигнала напряжение на входе REF уменьшилось. Тогда уменьшится и напряжение переключения обоих компараторов таймера - допустим, до 1/4 и 2/4 соответственно. Тогда уровень лог. «1» сменится на лог. «О» на выходе таймера после того, как напряжение на частотозадающем конденсаторе увеличится от 1/4 U cc до 2/4 U cc , а уровень лог. «О» сменится уровнем лог. «1» после того, как оно уменьшится от 2/4 U cc до 1/4 U cc . Нетрудно заметить, что в первом случае падение напряжения на частотозадающем резисторе больше (при U cc = 10 В оно изменяется от 7,5 В до 5,0 В), чем во втором (2,5 В -» 5,0 В), и, если вспомнить закон Ома, протекающий через ток в первом случае будет в 2 раза больше, чем во втором, т. е. при уровне лог. «1» на выходе таймера будет заряжаться в 2 раза быстрее, чем разряжаться - при уровне лог. «0». То есть длительность импульса в 2 раза меньше длительности паузы и при дальнейшем уменьшении напряжения REF уменьшится еще сильнее.

Логично заметить, что при увеличении напряжения на входе REF начнет увеличиваться, и как только оно превысит 2/3 U cc , длительность импульса станет больше длительности паузы.

На основе такого модулятора очень удобно собирать разнообразные импульсные . Простейшая С4 быстро заряжается. Как только напряжение на нем станет приближаться к значению, выставленному резистором R7, VT3 начнет приоткрываться, напряжение на входе REF DA1 начнет уменьшаться и длительность импульсов на выходе генератора будет уменьшаться. С каждым тактом колебаний генератора в С4, через VT1 и VT2, будет «закачиваться» все меньше энергии, пока, наконец, не наступит динамическое равновесие: С4 получает ровно столько же энергии, сколько отдает в нагрузку - при этом напряжение на нем остается неизменным. Если ток нагрузки внезапно увеличится, напряжение на конденсаторе немножко уменьшится («нагрузка «садит» источник питания»), VT3 немножко закроется и длительность импульсов лог. «1» на выходе генератора будет увеличиваться, пока снова не наступит динамическое равновесие. При уменьшении тока нагрузки длительность импульсов, наоборот, будет уменьшаться.

Динамическое равновесие не нужно путать с истинным равновесием. Последнее наступает тогда, когда, например, на две чашки весов кладут гири одинаковой массы; такое равновесие весьма неустойчиво, и его очень легко нарушить, незначительно изменив массу любой гири. Аналогия истинного равновесия из мира электроники - это когда для уменьшения напряжения, для питания какой-нибудь низковольтной от высоковольтного для нее источника питания используют . Пока потребляемый схемой ток неизменен, неизменно и напряжение на ней. Но как только потребляемый ток увеличится, напряжение на схеме уменьшится - равновесие нарушилось.

Поэтому во всех современных схемах источников питания (и не только их) реализуется принцип динамического равновесия: часть (она называется «цепь ООС» - этот термин вам уже знаком) следит за сигналом на выходе устройства, сравнивает его с эталонным сигналом (в схеме на рис. 2.14 «эталонное напряжение» - напряжение отпирания транзистора VT3; оно не очень стабильно, но нам большая точность и не нужна; для увеличения точности поддержания выходного напряжения неизменным можно заменить инвертором (k ycU и 20…50) на ОУ) и, если два сигнала не равны друг другу, изменяет напряжение на выходе устройства в соответствующую сторону до тех пор, пока они не совпадут.

Так как в этой схеме в цепь ООС можно поставить только каскад (только такой , да еще дороговатый ОУ, может усилить сигнал по напряжению; a k ycU в этой схеме, для увеличения стабильности выходного напряжения, должен быть значительный), то при увеличении напряжения на движке резистора R7 напряжение на входе REF будет уменьшаться, причем независимо от структуры ( нормально работать не будет.

Поэтому мне пришлось немножко схитрить: поставить на выходе DA1 промежуточный каскад на транзисторе (VT1) и сигнал для управления силовым транзистором структуры p-n-p (VT2) снимать с этого транзистора. Правда, при этом возникла новая проблема: заряжаются емкости база-эмиттер транзисторов «со свистом», а вот разряжаются очень медленно. Из-за этого открывается резко (что и надо), а закрывается весьма плавно, при этом падение напряжения на его выводах коллектор-эмиттер тоже плавно увеличивается и выделяющаяся на нем в виде тепла мощность резко возрастает. Поэтому для ускорения процесса запирания транзисторов пришлось поставить низкоомные R4 и R6. Из-за них экономичность усилителя при большом выходном токе больше, чем без них (уменьшаются потери энергии на нагрев радиатора транзистора VT2), а при малом (менее 200 мА) - меньше: только через несколько сложней: для этого нужен дополнительный запускающих импульсов. В этом и заключается принципиальное отличие ФИМ от ШИМ.

Как работает , хорошо видно из диаграмм. Длительность запускающих импульсов у такой (как на рис. 2.12) модулятора должна быть как можно меньше, по крайней мере, к тому времени, как С1 зарядится до напряжения переключения по входу R, на входе S уже должен быть установлен уровень лог. «1», который должен продержаться на нем некоторое время (примерно 1/100 от длительности импульса) для того, чтобы С1 успел разрядиться. В противном случае возможно возникновение самовозбуждения на близкой к максимальной рабочей частоте для используемой в схеме .

Перемножение аналоговых сигналов, как и усиление, является одной из основных операций при обработке электрических сигналов. Для осуществления операции перемножения были разработаны специализированные ИМС - перемножители аналоговых сигналов (ПАС). ПАС должны обеспечивать точное перемножение в широком динамическом диапазоне входных сигналов и в возможно более широком частотном диапазоне. Если ПАС позволяют перемножать сигналы любых полярностей, то их называют четырехквадрантными, если один из сигналов может быть только одной полярности, двухквадрантными. Перемножители, умножающие однополярные сигналы, называются одноквадрантными. Известны разнообразные одно- и двухквадрантные ПАС на основе элементов с управляемым сопротивлением, переменной крутизной, использованием логарифматоров и антилогарифматоров. Например, регулятор с изменением режима работы элементов, изображенный на рисунке 7.7в, можно использовать в качестве перемножителя, если на дифференциальный вход подать напряжение u x , а вместо E упр подать u y . Под воздействием u y меняется крутизна передаточной характеристики транзисторов, на базы которых подается второе перемножаемое напряжение u x . Можно показать, что выходное напряжение U вых , снимаемое между коллекторами транзисторов ДК, при R к 1 =R к 2 =R к определяется по формуле


Коэффициент усиления по току БТ, включенного по схеме с ОБ; ? T - температурный потенциал, ? T =25,6 мВ.

Если u x <<? T , то выражение для U вых можно упростить:


Недостатком рассмотренного простейшего перемножителя на одиночном ДК является весьма малый динамический диапазон входных сигналов, в котором обеспечивается приемлемая точность перемножения. Например, уже при u x =0,1? T погрешность перемножения достигает 10%.

Более широкий динамический диапазон перемножаемых напряжений при меньшей погрешности обеспечивают логарифмические перемножители построенные по принципу "логарифмирование-антилогарифмирование". Схема подобного ПАС приведена на рисунке 7.23.

Рисунок 7.23. Логарифмический умножитель

Здесь ОУ DA 1 и DA 2 производят логарифмирование входных напряжений, а DA 3 используется в качестве сумматора, на выходе которого напряжение равно:

U 0 = k 1 (lnu x + lnu y ) = k 2 lnu x u y .

С помощью ОУ DA 4 производят антилогарифмирование

U вых = k 3 antilnU 0 = k 3 u x u y

Следует заметить, что в данных выражениях используются напряжения, нормированные относительно одного вольта. Коэффициенты пропорциональности k 1 , k 2 , k 3 определяются резистивными элементами, включенными в цепи ООС используемых ОУ. Большим недостатком подобных ПАС является сильная зависимость диапазона рабочих частот от амплитуд входных сигналов. Так, если при входном напряжении 10В верхняя частота перемножаемых напряжений может составлять 100кГц, то при входном напряжении 1В полоса рабочих частот сужается до 10кГц .

Принцип логарифмирования и антилогарифмирования используется в наиболее распространенном способе построения четырехквадрантных ПАС с нормировкой токов, которые обладают наилучшей совокупностью таких параметров, как линейность, широкополосность, температурная стабильность. Обычно они имеют дифференциальные входы, что расширяет их функциональные возможности. Перемножители с нормировкой токов выполняются по интегральной полупроводниковой технологии.

Упрощенная принципиальная схема ИМС ПАС с нормировкой токов типа 525ПС1 приведена на рисунке 7.24.

Устройство содержит сложный дифференциальный каскад на транзисторах VT 7 , …, VT 10 . Перекрестные связи коллекторов этих транзисторов обеспечивают инверсию сигналов, необходимую для четырехквадрантного умножения. Входные каскады на транзисторах VT 3 , …, VT 6 и VT 11 , …, VT 14 преобразуют входные напряжения u x и u y в токи. С помощью транзисторов в диодном включении VT 1 и VT 2 происходит логарифмирование токового сигнала по входу Y. Антилогарифмирование сигнала Y и умножение его на сигнал X осуществляется усилителем на транзисторах VT 7 , …, VT 10 .


Рисунок 7.24. Упрощённая схема ИМС перемножителя 525ПС1

В рассматриваемом устройстве связь между входными и выходными сигналами может быть представлена в виде отношения токов. Выходной ток перемножителя определяется соотношением


где I X и I Y - токи, протекающие через резисторы R X и R Y ; I pX и I pY - рабочие токи в каналах X и Y.

Выходное напряжение, снимаемое с одного из сопротивлений нагрузки, равно


Масштабный коэффициент.

Все приведенные на рисунке 7.24 резисторы, кроме R 1 и R 2 , являются внешними. Их выбор зависит от конкретных требований к ПАС.

Для получения на выходе ПАС нулевого напряжения при равных нулю входных напряжениях предусмотрена подстройка с помощью переменных резисторов R 4 и R 5 . Если перемножитель работает только при одной полярности одного из входных сигналов, то он называется смещенным. Для превращения четырехквадрантного ПАС в смещенный достаточно на один из входов подать такое постоянное смещение, при котором сигналы на этом входе всегда оказываются меньше напряжения смещения.

К аналоговым ИС относят все виды интегральных схем, работа которых связана с обработкой непрерывных во времени сигналов. Такими ИС являются усилители электрических сигналов, фильтры, перемножители сигналов и др. Широкое распространение получили операционные усилители (ОУ). Их используют в различных функциональных устройствах, поскольку на основе ОУ удается реализовать широкий спектр линейных и нелинейных операторов преобразования входных сигналов в выходные сигналы (см. п. 1.6.1, п. 1.6.2).

Операционный усилитель – это аналоговая интегральная схема, которая имеет, как минимум, пять выводов (рис. 4.20).


Два вывода ОУ используются в качестве входных, один выход является выходным, два оставшихся вывода используются для подключения источника питания ОУ. В зависимости от фазовых соотношений входного и выходного сигналов один из входных выходов (вход 1) называется неинвертирующим, другой (вход 2) – инвертирующим. Выходное напряжение U вых связано с входными напряжениями U вх1 и U вх2 соотношением

U вых =К U 0 (U вх1 U вх2 ),

где К U 0 – собственный коэффициент усиления ОУ по напряжению (ограничивается значениями 10 5 … 10 6).

Из приведенного выражения следует, что ОУ воспринимает только разность входных напряжений, называемую дифференциальным входным сигналом, и нечувствителен к любой составляющей входного напряжения, воздействующей одновременно на оба входа ОУ.

В качестве источника питания ОУ используют двухполярный источник напряжения (+Е П, –Е П). Средний вывод этого источника, как правило, является общей шиной для входных и выходных сигналов и в большинстве случаев не подключается к ОУ. Напряжение питания реальных ОУ находится в диапазоне В. Применение источника питания со средней точкой обеспечивает возможность изменения не только уровня, но и полярности как входного, так и выходного напряжений ОУ.

На рис. 4.21 приведены схемы функциональных преобразователей входного сигнала (напряжения) u вх в выходной сигнал u вых на основе нереверсивного (а) и реверсивного (б) ОУ.



а)
б)

Для создания сопротивлений Z 1 и Z ОС применяются резисторы (R 1 , R ОС ) и конденсаторы (C 1 , C ОС ), а также полупроводниковые приборы: выпрямительные диоды, стабилитроны, транзисторы и др. В табл. 4.5 приведены зависимости выходного напряжения u вых от входного напряжения u вх функциональных преобразователей (регуляторов) с инвертирующим ОУ (рис. 4.21б) при различных реализациях Z 1 и Z ОС .

Реализация некоторых функциональных преобразователей

на инвертирующем ОУ

Таблица 4.5

k=R ОС /R 1 , Т И =R 1 C ОС К=R ОС /R 1 , Т Д =R ОС С 1 , Т И = R 1 C ОС
Т И = R 1 C ОС
К=R ОС /R 1 Т Д =R ОС С 1
C ОС R ОС
C ОС
R ОС
Z ОС Z 1 R 1 C 1 R 1

Трудно переоценить значение перепрограммируемых логических интегральных схем (ПЛИС) при синтезе логических систем. Комплексное развитие элементной базы и систем автоматизированного проектирования позволяет реализовывать сложные логические системы в невиданно короткие сроки и с минимальными материальными затратами. Поэтому вполне объяснимо стремление добиться подобных результатов в области проектирования и производства аналоговых систем. Однако множество предпринятых в этом направлении попыток пока не принесли ожидаемых результатов, а программируемые аналоговые ИС (ПАИС) и матричные аналоговые БИС (МАБИС) так и не стали универсальными.

Проблемы проектирования программируемых аналоговых БИС

Стремительный прогресс в области проектирования логических систем на ПЛИС был предопределен тем, что все логические системы основываются на четко проработанном математическом аппарате алгебры Буля. Эта теория позволяет доказать, что построение произвольной логической функции возможно путем упорядоченной композиции лишь одного элементарного оператора - логического И-НЕ (или ИЛИ-НЕ). То есть любую строго логическую систему можно проектировать из элементов всего одного типа, например И-НЕ.

Совсем иная ситуация в области проектирования (синтеза) и анализа (декомпозиции) принципиальных схем аналоговых систем. В аналоговой электронике до сих пор нет единого общепризнанного математического аппарата, который позволил бы решать задачи анализа и синтеза с единых методологических позиций. Причины этого явления следует искать в истории развития аналоговой электроники.

На ранних этапах схемотехника аналоговых устройств развивалась в соответствии с концепциями функционально-узлового метода, основной идеей которого было деление сложных принципиальных схем на узлы. Узел состоит из группы элементов и выполняет вполне определенную функцию. При объединении узлы образуют блоки, платы, шкафы, механизмы - т.е. какие-то единые конструкции, которые называют устройствами. Объединение устройств образует систему. Функционально-узловой метод предполагал, что элементарными составляющими систем должны быть узлы, основная задача которых - выполнение вполне определенной функции.

Именно поэтому за критерий классификации узлов была принята функциональность, то есть факт выполнения узлом какой-то функции. Однако по мере развития электроники выделенных и обособленных функций (следовательно - и узлов) оказалось чрезвычайно много. Исчезла всякая возможность их минимизации и унификации, что необходимо для синтеза сложных систем. Именно поэтому тормозилось и продолжает тормозиться развитие матричных аналоговых БИС (МАБИС) и перепрограммируемых аналоговых интегральных схем (ПАИС).

Состояние дел в области программируемых аналоговых схем можно проследить, анализируя разработки ведущих российских и иностранных компаний. Так, специалисты ОАО "НИИТТ и завод "Ангстрем" сосредоточили усилия на разработке и производстве аналого-цифровых БМК (базовых матричных кристаллов) типа "Руль" Н5515ХТ1, Н5515ХТ101, предназначенных для систем сбора данных, контроля и управления, для медицинской техники и контрольно-измерительной аппаратуры .

Конструкция этих БМК включает аналоговую и цифровую матрицу. Цифровая матрица содержит 115 цифровых базовых ячеек (230 вентилей 2И-НЕ), которые расположены пятью рядами по 23 ячейки в ряд. Аналоговая матрица объединяет 18 аналоговых базовых ячеек, размещенных двумя рядами по 9 ячеек. Между рядами аналоговых ячеек располагаются два ряда конденсаторов (номиналом 17,8 пФ) и два ряда диффузионных резисторов (по 24,8 кОм). Между аналоговой и цифровой частью расположен ряд 3,2-кОм резисторов.

В БМК предусмотрено два типа аналоговых ячеек (А и Б). Ячейки типа А состоят из 12 прп- и четырех рлр-транзисторов с изолированным коллектором и 38 многоотводных диффузионных резисторов. В ячейках типа Б четыре лрл-транзистора заменены двумя р-МОП-транзисторами. Периферийные ячейки типа А и Б содержат по четыре мощных лрл-транзистора (в ячейках типа Б - с изолированным коллектором) и по два биполярных транзистора.

Цифровые базовые ячейки представлены тремя типами - из четырех л-МОП-транзисторов, из четырех р-МОП-транзисторов и из комплиментарной пары биполярных транзисторов. Кроме того, на периферии кристалла расположены мощные цифровые ячейки, которые содержат по четыре мощных л-МОП- и р-МОП-транзисто-ра, а также по два лрл-транзистора, включенных по схеме Дарлингтона.

Для БМК разработаны библиотеки стандартных аналоговых и цифровых элементов, которые существенно облегчают и ускоряют процесс проектирования устройств на базе БМК. Эти и подобные им БМК содержат несоединенные между собой наборы электрорадиоэлементов (ЭРЭ), из которых может быть получен ряд функциональных узлов, оговоренных в библиотеке. Основной недостаток таких микросхем - весьма узкая область применения, ограниченная конкретными значениями номиналов и других характеристик ЭРЭ в данном наборе. Возможности функциональных узлов, разработанных и рекомендованных для данного набора, приводятся в сопровождающей микросхему библиотеке.

Рис. 1. Структура ispPAC-10

С 2000 года фирма Lattice Semiconductor выпускает программируемые аналоговые интегральные схемы (ПАИС) семейства ispPAC (In-System Programmable Analog Circuit) с программированием в системе, т.е. без извлечения из печатной платы . К середине 2000 года производились три представителя этого семейства: ispPAC-Ю (рис.1), ispPAC-20 (рис.2) и ispPAC-80. Они интегрируют до 60 активных и пассивных элементов, которые конфигурируются, моделируются и программируются с помощью пакета PAC-Designer.

ПАИС семейства ispPAC содержат:

Схемы последовательного интерфейса, регистры и элементы электрически репрограммируемой энергонезависимой памяти (EEPROM), обеспечивающие конфигурирование матрицы;
программируемые аналоговые ячейки (PACcells) и состоящие из них программируемые аналоговые блоки (PACblocks);
программируемые элементы для межсоединений (ARP - Analog Routing Pool).

Заложенная в эту серию архитектура основывается на базовых ячейках, содержащих: инструментальный усилитель (ИУ); выходной усилитель (ВУ), реализованный по схеме сумматора/интегратора; источник опорного напряжения 2,5 В (ИОН); 8-разрядный ЦАП с выходом по напряжению и сдвоенный компаратор (КП). Аналоговые входы и выходы ячеек (кроме ИОН) для повышения динамического диапазона обрабатываемых сигналов выполнены по дифференциальной схеме. Два ИУ и один ВУ образуют макроячейку, называемую РАС-блоком, в котором выходы ИУ соединены с суммирующими входами ВУ. Микросхема ispPAC-10 включает четыре РАС-блока, a ispPAC-20 - два. В состав ispPAC-20 также входят ячейки ЦАП и компараторов. В ячейке программируются коэффициент усиления ИУ в диапазоне от -10 до +10 с шагом 1, а в цепи обратной связи ВУ - величина емкости конденсатора (128 возможных значений) и включение/выключение сопротивления.

Ряд изготовителей ИС применяют для программирования аналоговых функций технологию "переключаемых конденсаторов", предполагающую изменение емкости частотно-задающих цепей посредством электронного ключа, переключающегося по условию.

Рис. 2. Структура ispPAC-20

Подход компании Lattice основан на использовании схем с постоянными во времени характеристиками, которые могут быть изменены в процессе переконфигурования системы без выключения питания. Это улучшение существенно, так как избавляет от дополнительных обработок сигнала, необходимых в первом методе.

Средства внутренней разводки (Analog Routing Pool) позволяют соединять друг с другом входные контакты микросхемы, входы и выходы макроячеек, выход ЦАП и входы компараторов. Объединяя несколько макроячеек, можно строить схемы перестраиваемых активных фильтров в диапазоне частот от 10 до 100 кГц, основанных на использовании звена интегратора.
Следует заметить, что ispPAC фирмы Lattice в наибольшей степени приближены к ПАИС. Единственный их недостаток - отсутствует система универсальных базовых элементов, которая позволяла бы проектировать не только перестраиваемые активные фильтры, а достаточно широкое множество аналоговых систем. Именно это обстоятельство мешает ispPAC фирмы Lattice Semiconductor стать аналогом ПЛИС таких фирм, как Altera и Xilinx.

В целом, анализируя ситуацию в области разработок и практических реализаций аналоговых микросхем, можно сделать ряд обобщений:

Основная масса промышленно реализованных аналоговых микросхем по степени интеграции не может быть отнесена к БИСам;
аналоговые БИС и БМК предназначаются для проектирования устройств определенного класса, т.е. они не универсальны;
при проектировании больших аналоговых систем главенствующим остается функционально-узловой метод (специализированные комплекты ИС, например для телевизионных приемников).

Единый базис проектирования ПЛИС и МАБИС

Однако задача разработки единого схемотехнического базиса проектирования аналоговых систем все же имеет решение, что мы попробуем теоретически обосновать и показать возможные направления практической реализации изложенных идей.

Прежде всего, следует выбрать математическую модель большой аналоговой электронной системы, которая позволила бы выделить малочисленную группу базисных элементов. В области анализа и синтеза электронных схем альтернатив математическому аппарату систем линейных дифференциальных уравнений практически нет, что было признано еще в шестидесятых годах прошлого столетия . Отметим, однако, что идея практического массового использования данной методологии и сегодня еще не овладела умами всех специалистов.

Система дифференциальных уравнений состоит из элементов, их связей и характеризуется определенной структурой. Элементный базис дифференциальных уравнений был исследован в первой половине прошлого века в рамках научной дисциплины "автоматика". В данной области проявилось такое достоинство дифференциальных уравнений, как унификация: их форма не зависит от описываемой модели процесса. Однако в стандартной форме записи дифференциального уравнения нет никакой наглядной информации о характере взаимосвязей в исследуемой системе. Поэтому методы наглядного отображения структуры систем дифференциальных уравнений в виде различного рода схем разрабатывались на всем протяжении развития теории автоматического управления.

К концу 60-х годов двадцатого века вполне сложилась современная точка зрения на структурную организацию моделей динамических систем . Формирование математической модели системы начинается с ее разбиения на звенья и последующего их описания - либо аналитически в виде уравнений, связывающих входные и выходные величины звена; либо графически в виде мнемосхем с характеристиками. По уравнениям или характеристикам отдельных звеньев составляются уравнения или характеристики системы в целом.

Звенья динамических систем, выделенные в качестве типовых

Наименование звена

Уравнение звена y(t)=f(u(t))

Передаточная функция W(s)=y(s)/u(s)

Элементарные составляющие

Пропорциональное
Интегрирующее

dy(t)/dt = ku(t); py = ku

Дифференцирующее

y(t)=k·du(t)/dt; y = kpu

Апериодическое 1 -го порядка


Форсирующее 1 -го порядка


Интегрирующее инерционное

W(s) = k/


Дифференцирующее инерционное

W(s) = ks/(Ts+1)


Изодромное

W(s) = k(Ts+1)/s


Колебательное, консервативное, апериодическое 2-го порядка

(T 2 p 2 +2ξTp+1)y = ku

W(s)=k/(T 2 p2+2ξTp+1)


Заметим, что если для функциональной схемы система разбивается на звенья исходя из выполняемых ими функций, то для математического описания систему фрагментируют исходя из удобства получения описания. Поэтому звенья должны быть как можно более простые (мелкие). С другой стороны, при разбиении системы на звенья математическое описание каждого звена должно быть составлено без учета связей его с другими звеньями. Это возможно, если звенья обладают направленностью действия - т.е. передают воздействие только в одном направлении, с входа на выход. Тогда изменение состояния какого-либо звена не влияет на состояние предшествующего звена.

Если условие направленности действия звеньев выполнено, математическое описание всей системы можно получить в виде системы независимых уравнений отдельных звеньев, дополненных уравнениями связи между ними. Наиболее часто встречающимися (типовыми) считаются такие звенья, как апериодическое, колебательное, интегрирующее, дифференцирующее, звено постоянного запаздывания .

Проблема элементарных звеньев в моделях вида системы дифференциальных уравнений исследовалась рядом авторов . Анализ показывает , что их позиции в основном сводятся к констатации факта существования типовых звеньев и исследования их роли в процессе образования более сложных структур. Отбор в группу типовых звеньев производится произвольно, без каких-либо критериев. В перечни типовых без объяснения и обоснования включаются разные звенья, а для обозначения типовых звеньев в равной мере используются также термины "простейшие" и "элементарные" (см. таблицу). Между тем, исследование многочисленных "типовых" звеньев динамических систем методами структурных матриц показывает, что лишь три звена - пропорциональное, интегрирующее и дифференцирующее - в своих структурных матрицах не содержат матричных циклов. Поэтому только их можно называть элементарными. Все остальные звенья строятся путем комбинации элементарных звеньев.

Так, если пропорциональное звено с передаточной функцией W B (s) = k B и дифференцирующее звено с передаточной функцией W A (s) = k A s соединить по схеме отрицательной обратной связи (рис.3), то эквивалентная передаточная функция

Таким образом, результат с точностью до значений постоянных времени совпадает с передаточной функцией апериодического звена первого порядка. Значит, это звено можно получить соединив пропорциональное и дифференцирующее звенья по схеме с отрицательной обратной связью и, следовательно, оно не может считаться элементарным.

Рис.3. Эквивалентная, схема апериодического звена

Точно так же можно построить и остальные звенья, включенные в таблицу. Особо следует остановиться на передаточной функции колебательного звена (T 2 p 2 + 2ξTp + 1)y = ku. Так, если соединить последовательно два апериодических звена с передаточными функциями отличающимися лишь постоянными времени, то эквивалентная передаточная функция примет вид

Таким образом, результат с точностью до значений постоянных времени совпадает с передаточной функцией исследуемого звена. Следовательно, колебательное, консервативное и апериодическое звенья 2-го порядка можно получить путем последовательного соединения звеньев первого порядка. Значит, они не могут считаться элементарными, хотя называть их типовыми в принципе допустимо.

Анализ результатов, приведенных в последнем столбце таблицы, позволяет сделать вывод о том, что такие звенья, как апериодическое, изодромное, форсирующее, дифференцирующее инерционное и интегрирующее инерционное, могут быть получены соединением элементарных звеньев. Чтобы доказать, что передаточные функции и остальных типовых звеньев могут быть получены путем соединения элементарных звеньев, следовало бы проанализировать соединения по три, четыре и так далее звеньев по типовым схемам соединения. Такой же результат можно получить, если рассмотреть соединения элементарных звеньев с типовыми звеньями первого порядка. Часть такого исследования уже проделана, его результаты приведены в работе .

Таким образом, доказано, что посредством соединения элементарных звеньев достаточно просто получить все передаточные функции так называемых типовых динамических звеньев. Следовательно, произвольные динамические системы могут быть синтезированы с помощью операторов размножения и соединения всего трех элементарных звеньев: пропорционального, дифференцирующего и интегрирующего. Этот вывод имеет фундаментальное значение, так как он определяет элементный базис, необходимый для построения линейных динамических систем любого порядка, в том числе - радиоэлектронных схем. И если динамические системы предполагается строить из ограниченной номенклатуры динамических звеньев, как в случае МАБИС и ПАИС, то сделанный вывод важен особенно.

Рис.4. Простые схемные решения элементарных узлов: а) много-входовой сумматор, б) дифференциальный усилитель (пропорциональное звено), в) дифференциатор (дифференцирующее звено), г) интегратор (интегрирующее звено)

Появляется возможность синтеза произвольных аналоговых устройств всего из пяти функциональных узлов - мультиплексора, сумматора, умножителя, интегратора и дифференциатора (рис.4)! Заметим, что приведенные на рис. 4 схемы не следует воспринимать как реально отработанные схемотехнические решения, а только лишь как обоснование возможности замены элементарных звеньев на функциональной схеме базовыми радиоэлектронными элементами. Заменяя элементарные звенья функциональных схем их аппаратными аналогами, можно проектировать аналоговые устройства с заданными характеристиками.

Пример синтеза аналогового устройства

Рассмотрим весьма простой пример синтеза принципиальной схемы аналогового устройства по модели, заданной системой дифференциальных уравнений в форме преобразований Лапласа вида: x 0 = g, x 1 = x 0 - 2x 2 /s, x 2 = 10x 1 /s, x 3 = x 2 - 10x 4 /s, x 4 = 500x 3 /s.

Построим структурную матрицу этой системы дифференциальных уравнений и выделим стрелками матричные циклы:
По уравнениям и структурной матрице восстановим блок-схему устройства (рис.5). В соответствии со структурной матрицей система обладает двумя отрицательными обратными связями: узел 2 -> узел1 и узел 4 -> узел 3, соответственно. Поскольку структурная схема на рис.5 изначально построена на элементарных звеньях, ее можно рассматривать как функциональную схему электронного устройства.

Рис.5. Структурная схема синтезируемого устройства (поэтапно)

Из результатов моделирования (рис.6) синтезированной схемы видно, что при заданных параметрах она представляет собой два последовательно соединенных генератора. То есть весьма простое устройство, состоящее всего из четырех интегрирующих звеньев, выполняет сравнительно сложную функцию модуляции низкочастотного колебания высокочастотным.
Отметим, что при проектировании и производстве МАБИС и ПА-ИС совершенно не обязательно использовать аппаратные аналоги элементарных звеньев, выполненные на операционных усилителях, как на рис.4, хотя в этом базисе они лучше всего проработаны . Наиболее перспективна реализация аппаратных аналогов элементарных звеньев на оптоэлектронных компонентах, хотя возможны и любые другие варианты.

Рис.6. Осциллограмма синтезированного устройства

Универсальные МАБИС и ПАИС - это возможно

Таким образом, можно выделить пять элементарных (простейших) компонентов любой РЭА, соответствующих основным операторам систем дифференциальных уравнений: умножения, дифференцирования, интегрирования, сложения и размножения (мультиплексирования). Методика проектирования аналоговых электронных устройств предполагает :

Использование в качестве исходных данных для проектирования математической модели в виде системы из n дифференциальных уравнений первого порядка (или дифференциального уравнения л-го порядка;
построение структурной матрицы проектируемого устройства и нахождение матричных циклов;
восстановление структурной схемы проектируемого устройства;
преобразование структурной схемы в функциональную путем замены типовых звеньев совокупностью элементарных звеньев;
преобразование функциональной схемы проектируемого устройства в схему электрическую принципиальную путем замены элементарных звеньев эквивалентными им аппаратными базисными элементами (возможно, применение современных САПР позволит избежать этот этап, синтезируя топологию непосредственно из функционального описания);
разработка топологии проектируемого устройства.

Предлагаемый подход обладает рядом решающих преимуществ. Так, функциональная схема проектируемого устройства синтезируется из исходной системы дифференциальных уравнений путем стандартных матричных преобразований, которые могут быть упорядочены и преобразованы в алгоритм для автоматических вычислений. Схема электрическая принципиальная синтезируется из функциональной схемы простой заменой элементарных динамических звеньев эквивалентными им базисными элементами. Также существенно может упроститься моделирование устройства средствами САПР.

Таким образом, поскольку множество элементарных звеньев не многочисленно, появляется реальная возможность проектирования универсальных МАБИС и ПАИС. Что, в свою очередь, значительно упрощает проектирование аналоговых и цифроаналоговых устройств и открывает заманчивые перспективы дальнейшего развития электроники в целом.

ЛИТЕРАТУРА

1. Аленин С., Иванов В., Полевиков В., Трудновская Е. Реализация специализированных аналого-цифровых устройств на базе БИК МОП БМКтипа Н5515ХТ1. - ChipNews, 2000, №2.
2. Курбатов. А. Программируемые аналоговые интегральные схемы. Жизнь продолжается. - Компоненты и технологии, 2000, №2.
3. Петросянц К., Суворов А., Хрусталев И. Программируемые аналоговые матрицы фирмы Lattice Semiconductor. - ChipNews, 2001, №1.
4. Ку Е.С., Сорер Р.А. Применение метода переменных, характеризующих состояние к анализу цепей. - ТИИЭР, 1965, №7.
5. Ильин В.Н. Машинное проектирование электронных схем. - М.: Энергия, 1972.
6. Юревич Е.И. Теория автоматического управления. - Л.: Энергия, 1975.
7. Куропаткин П.В. Теория автоматического управления. - М.: Высшая школа, 1973.
8. Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. - М.: Высшая школа, 1977.
9. Воронов А.А. Теория автоматического управления. Часть 1. Теория линейных систем автоматического управления. - М.: Высшая школа, 1977.
10. Мишин Г.Т. Естественно-научные основания аналоговой микроэлектроники. - М.: МИЭМ, 2003.
11. Шатихин Л.Г. Структурные матрицы и их применение для исследования систем. - М.: Машиностроение, 1974.
12. Шатихин Л.Г. Структурные матрицы и их применение для исследования систем. - М.: Машиностроение, 1991.
13. Аналоговые интегральные схемы. /Под ред. Дж.Коннели. -М.: Мир, 1977.
14. Дж. Ленк. Электронные схемы. Практическое руководство. - М.: Мир, 1985.
15. Нестеренко Б.К. Интегральные операционные усилители. - М.: Энергоиздат, 1982.
16. Хоровиц П., Хилл У. Искусство схемотехники Т. 1. - М.: Мир, 1983.